🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The use of Ann for the prediction of the modified relative permeability functions in stratified reservoirs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a method of instantaneous construction of relative permeability pseudo functions in analytical form upscaled to a coarser computational grid using a system of artificial neural networks. The coefficients of these functions can be forecasted by the neural network. The learning dataset is based on a preliminary series of calculations at the reference values of the system parameters the exponents of the initial functions, the liquid phases viscosity ratio, the statistical parameters of distribution laws of the reservoir’s properties. The latter may be obtained according to the primary well logging data with no need for building a detailed geological model.

About the authors

K. Potashev

Kazan (Volga Region) Federal University, N.I. Lobachevsky Institute of Mathematics and Mechanics

Author for correspondence.
Email: kpotashev@mail.ru
Russian Federation, Kazan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.