🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On complete convergence in mean for double sums of independent random elements in Banach spaces


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a double array of random elements {Tm,n, m ≥ 1, n ≥ 1} in a real separable Banach space X, we study the notion of Tm,n converging completely to 0 in mean of order p where p is a positive constant. This notion is stronger than (i) Tm,n converging completely to 0 and (ii) Tm,n converging to 0 in mean of order p as max{m, n} →∞. When X is of Rademacher type p (1 ≤ p ≤ 2), for a double array of independent mean 0 random elements {Vm,n, m ≥ 1, n ≥ 1} in X and a double array of constants {bm,n, m ≥ 1, n ≥ 1}, conditions are provided under which max1≤k≤m,1≤l≤n||Ʃi=1kƩj=1lVi,j||/bm,n converges completely to 0 in mean of order p. Moreover, these conditions are shown to provide an exact characterization of Rademacher type p (1 ≤ p ≤ 2) Banach spaces. Illustrative examples are provided.

About the authors

R. Parker

Department of Statistics

Email: rosalsky@stat.ufl.edu
United States, Gainesville, FL, 32611-8545

A. Rosalsky

Department of Statistics

Author for correspondence.
Email: rosalsky@stat.ufl.edu
United States, Gainesville, FL, 32611-8545

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.