🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On asymptotic expansion of posterior distribution


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper suggests a new asymptotic expansion of posterior distribution, which improves the known normal asymptotic. The main difference from the previous works on this subject is that the suggested expansion is calculated for the deviation from the true parameter value and not from the value of the maximum likelihood estimator, as it has been done before. This setting is more appropriate for Bayesian and d-posterior [1] approaches to a statistical inference problem. The new expansion can be derived under weaker assumptions than the previously known. Moreover, an asymptotic expansion for the moments of posterior distribution is also presented. The accuracy of the expansion is tested on binomial model with beta prior and results are compared to the Johnson’s expansion [2].

Sobre autores

A. Zaikin

Department of Mathematical Statistics

Autor responsável pela correspondência
Email: Kaskrin@gmail.com
Rússia, Kremlevskaya ul. 35, Kazan, Tatarstan, 420008

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016