🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Nonnegative Tensor Train Factorization with DMRG Technique


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tensor train is one of the modern decompositions used as low-rank tensor approximations of multidimensional arrays. If the original data is nonnegative we sometimes want the approximant to keep this property. In this work new methods for nonnegative tensor train factorization are proposed. Low-rank approximation approach helps to speed up the computations whereas DMRG technique allows to adapt nonnegative TT ranks for better accuracy. The performance analysis of the proposed algorithms as well as comparison with other nonnegative TT factorization method are presented.

About the authors

E. M. Shcherbakova

Lomonosov Moscow State University; Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences

Author for correspondence.
Email: lena19592@mail.ru
Russian Federation, Moscow, 119991; Moscow, 119333

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.