🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Unsupervised Graph Anomaly Detection Algorithms Implemented in Apache Spark


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The graph anomaly detection problem occurs in many application areas and can be solved by spotting outliers in unstructured collections of multi-dimensional data points, which can be obtained by graph analysis algorithms. We implement the algorithm for the small community analysis and the approximate LOF algorithm based on Locality-Sensitive Hashing, apply the algorithms to a real world graph and evaluate scalability of the algorithms. We use Apache Spark as one of the most popular Big Data frameworks.

Sobre autores

A. Semenov

Scientific Research Centre for Electronic Computer Technology (NICEVT) JSC

Autor responsável pela correspondência
Email: semenov@nicevt.ru
Rússia, Varshavskoe sh. 125, Moscow, 117587

A. Mazeev

Scientific Research Centre for Electronic Computer Technology (NICEVT) JSC

Email: semenov@nicevt.ru
Rússia, Varshavskoe sh. 125, Moscow, 117587

D. Doropheev

Moscow Institute of Physics and Technology (State University)

Email: semenov@nicevt.ru
Rússia, Institutskii per. 9, Dolgoprudny, Moscow oblast, 141701

T. Yusubaliev

Quality Software Solutions Ltd.

Email: semenov@nicevt.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018