🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Geometric structures on solutions of equations of adiabatic gas motion


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper we show that characteristic covectors of equations of n-dimensional adiabatic gas motion, n = 1, 2, 3, generate a geometric structure on every their solution. This structure consists of a hyperplane and a non degenerate cone in each cotangent space to a solution so that the hyperplane and the cone intersect only at the zero point. We investigate differential invariants of this structure. In particular, we find a natural linear connection on every solution. A torsion tensor of this connection is trivial for n = 1. For n = 2, 3, this tensor is not trivial in general. For n = 1, we calculate solutions having the linear connection with zero curvature tensor. For n = 2, 3, we calculate solutions with zero torsion tensor.

Sobre autores

V. Yumaguzhin

Program Systems Institute

Autor responsável pela correspondência
Email: yuma@diffiety.botik.ru
Rússia, Pereslavl’-Zalesskiy, 152020

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016