🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On Kähler Geometry of Infinite-dimensional Complex Manifolds Diff+(S1)/S1 and Diff+(S1)/Möb(S1)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The infinite-dimensional complex Frechet manifolds \({\cal R}: = {\rm{Dif}}{{\rm{f}}_ + }({S^1})/{S^1}\) and \({\cal S}: = {\rm{Dif}}{{\rm{f}}_ + }({S^1})/{\rm{M\ddot ob}}({S^1})\) are the quotients of the group Diff+(S1) of orientation-preserving diffeomorphisms of the unit circle S1 modulo subgroups of rotations and fractional-linear transformations respectively. These manifolds are the coadjoint orbits of the Virasoro group and the only ones having a Kähler structure. It motivates the study of their complex geometry. These manifolds are also closely related to string theory because they can be realized as the spaces of complex structures on loop spaces.

Авторлар туралы

A. Sergeev

Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: sergeev@mi-ras.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019