🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Differential Inequalities and Univalent Functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let \(\mathcal{M}\) be the class of analytic functions in the unit disk \(\mathbb{D}\) with the normalization f(0) = f′(0) − 1 = 0, and satisfying the condition

\(\left|{{z^2}{{\left({{z\over{f(z)}}}\right)}^{\prime\prime}}\;+\;f'(z){{\left({{z\over{f(z)}}} \right)}^2}\;-\;1}\right|\le 1,\;\;\;z\;\in\;\mathbb{D}.\)
Functions in \(\mathcal{M}\) are known to be univalent in \(\mathbb{D}\). In this paper, it is shown that the harmonic mean of two functions in \(\mathcal{M}\) are closed, that is, it belongs again to \(\mathcal{M}\). This result also holds for other related classes of normalized univalent functions. A number of new examples of functions in \(\mathcal{M}\) are shown to be starlike in \(\mathbb{D}\). However we conjecture that functions in \(\mathcal{M}\) are not necessarily starlike, as apparently supported by other examples.

About the authors

Rosihan M. Ali

School of Mathematical Sciences

Author for correspondence.
Email: rosihan@usm.my
Malaysia, Penang, 11800

Milutin Obradović

Department of Mathematics, Faculty of Civil Engineering

Author for correspondence.
Email: obrad@grf.bg.ac.rs
Serbia, Bulevar Kralja Aleksandra 73, Belgrade, 11000

Saminathan Ponnusamy

Department of Mathematics

Author for correspondence.
Email: samy@iitm.ac.in
India, Chennai, 600 036

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.