🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

A Note about Torsional Rigidity and Euclidean Moment of Inertia of Plane Domains


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Denote by P(G) the torsional rigidity of a simply connected plane domain G, and by I2(G) the Euclidean moment of inertia of G. In 1995 F.G. Avkhadiev proved that P(G) and I2(G) are comparable quantities in sense of Pólya and Szegö. Moreover, it was shown that the ratio P(G) /I2(G) belongs to the segment [1, 64]. We investigate the following conjecture P(G) ≥ 3I2(G), where G is a simply connected domain. We prove that the conjecture is true for polygonal domains circumscribed about a circle. For convex domains we show sharp isoperimetric inequalities, which justify the conjecture, in particular, we prove that P(G) > 2I2(G). Some aspects of approximate formulas for P(G) are also discussed.

Авторлар туралы

R. Salakhudinov

N. I. Lobachevskii Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: rsalakhud@gmail.com
Ресей, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018