🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Effective calculations on neuromorphic hardware based on spiking neural network approaches


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The nowadays’ availability of neural networks designed on power-efficient neuromorphic computing architectures gives rise to the question of applying spiking neural networks to practical machine learning tasks. A spiking network can be used in the classification task after mapping synaptic weights from the trained formal neural network to the spiking one of same topology. We show the applicability of this approach to practical tasks and investigate the influence of spiking neural network parameters on the classification accuracy. Obtained results demonstrate that the mapping with further tuning of spiking neuron network parameters may improve the classification accuracy.

Sobre autores

A. Sboev

National Research Centre “Kurchatov Institute,”; National Research Nuclear University MEPhI; Plekhanov Russian University of Economics; JSC “Concern ‘Systemprom’,”

Autor responsável pela correspondência
Email: Sboev_AG@nrcki.ru
Rússia, Moscow, 123182; Moscow, 115409; Moscow, 117997; Moscow, 107113

A. Serenko

National Research Centre “Kurchatov Institute,”

Email: Sboev_AG@nrcki.ru
Rússia, Moscow, 123182

D. Vlasov

National Research Nuclear University MEPhI; JSC “Concern ‘Systemprom’,”

Email: Sboev_AG@nrcki.ru
Rússia, Moscow, 115409; Moscow, 107113

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017