🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Effective calculations on neuromorphic hardware based on spiking neural network approaches


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The nowadays’ availability of neural networks designed on power-efficient neuromorphic computing architectures gives rise to the question of applying spiking neural networks to practical machine learning tasks. A spiking network can be used in the classification task after mapping synaptic weights from the trained formal neural network to the spiking one of same topology. We show the applicability of this approach to practical tasks and investigate the influence of spiking neural network parameters on the classification accuracy. Obtained results demonstrate that the mapping with further tuning of spiking neuron network parameters may improve the classification accuracy.

Авторлар туралы

A. Sboev

National Research Centre “Kurchatov Institute,”; National Research Nuclear University MEPhI; Plekhanov Russian University of Economics; JSC “Concern ‘Systemprom’,”

Хат алмасуға жауапты Автор.
Email: Sboev_AG@nrcki.ru
Ресей, Moscow, 123182; Moscow, 115409; Moscow, 117997; Moscow, 107113

A. Serenko

National Research Centre “Kurchatov Institute,”

Email: Sboev_AG@nrcki.ru
Ресей, Moscow, 123182

D. Vlasov

National Research Nuclear University MEPhI; JSC “Concern ‘Systemprom’,”

Email: Sboev_AG@nrcki.ru
Ресей, Moscow, 115409; Moscow, 107113

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017