🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let τ be a faithful normal semifinite trace on a von Neumann algebra , and u be a unitary part of . We prove a new property of rearrangements of some tripotents in . If V ∈ ℳ is an isometry (or a coisometry) and U − V is τ-compact for some U ∈ ℳu then Vu. Let be a factor with a faithful normal trace τ on it. If V ∈ ℳ is an isometry (or a coisometry) and UV is compact relative to for some U ∈ ℳu then V ∈ ℳu. We also obtain some corollaries.

About the authors

A. M. Bikchentaev

N. I. Lobachevskii Institute of Mathematics and Mechanics

Author for correspondence.
Email: Airat.Bikchentaev@kpfu.ru
Russian Federation, Kazan, Tatarstan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.