🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

String theory and quasiconformal maps


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The phase space of the closed string theory may be identified with the space of smooth loops. This reduces the problem of quantization of string theory to the quantization of the space of smooth loops. In this paper we describe the solution of the latter problem obtained in a series of papers. But the symplectic form of string theory is correctly defined not only on the space of smooth loops but also on its Hilbert completion coinciding with the Sobolev space of half-differentiable functions. So it is reasonable to consider this space as the phase manifold of non-smooth string theory. There is a natural group associated with this Sobolev space, namely the group of quasisymmetric homeomorphisms of the circle acting by change of variable. Unfortunately, this action is not smooth. However, we are able to quantize the Sobolev space of half-differentiable functions provided with the action of the group of quasisymmetric homeomorphisms using methods of noncommutative geometry.

Авторлар туралы

A. Sergeev

Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: sergeev@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017