🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The Three-body Problem in Riemannian Geometry. Hidden Irreversibility of the Classical Dynamical System


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The classical three-body problem is formulated as a problem of geodesic flows on a Riemannian manifold. It is proved that a curved space allows to detect new hidden symmetries of the internal motion of a dynamical system and reduces the three-body problem to the system of 6th order. It is shown that the equivalence of the original Newtonian three-body problem and the developed representation provides coordinate transformations together with an underdetermined system of algebraic equations. The latter makes the system of geodesic equations relative to the evolution parameter (internal time), i.e. to the arc length of the geodesic curve, irreversible.

About the authors

A. S. Gevorkyan

Institute for Informatics and Automation Problems; Institute of Chemical Physics

Author for correspondence.
Email: g_ashot@sci.am
Armenia, Yerevan, 0014; Yerevan, 0014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.