🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Symmetry Reduction and Soliton-Like Solutions for the Generalized Korteweg-De Vries Equation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We analyze the gKdV equation, a generalized version of Korteweg-de Vries with an arbitrary function f(u). In general, for a function f(u) the Lie algebra of symmetries of gKdV is the 2-dimensional Lie algebra of translations of the plane xt. This implies the existence of plane wave solutions. Indeed, for some specific values of f(u) the equation gKdV admits a Lie algebra of symmetries of dimension grater than 2. We compute the similarity reductions corresponding to these exceptional symmetries. We prove that the gKdV equation has soliton-like solutions under some general assumptions, and we find a closed formula for the plane wave solutions, that are of hyperbolic secant type.

About the authors

D. Blázquez-Sanz

Universidad Nacional de Colombia

Author for correspondence.
Email: dblazquezs@unal.edu.co
Colombia, Sede Medellín

J. M. Conde Martín

Universidad San Francisco de Quito

Email: dblazquezs@unal.edu.co
Ecuador, Quito

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.