🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

A Dirichlet Regression Model for Compositional Data with Zeros


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Compositional data are met in many different fields, such as economics, archaeometry, ecology, geology and political sciences. Regression where the dependent variable is a composition is usually carried out via a log-ratio transformation of the composition or via the Dirichlet distribution. However, when there are zero values in the data these two ways are not readily applicable. Suggestions for this problem exist, but most of them rely on substituting the zero values. In this paper we adjust the Dirichlet distribution when covariates are present, in order to allow for zero values to be present in the data, without modifying any values. To do so, we modify the log-likelihood of the Dirichlet distribution to account for zero values. Examples and simulation studies exhibit the performance of the zero adjusted Dirichlet regression.

About the authors

Michail Tsagris

Department of Computer Science

Author for correspondence.
Email: mtsagris@yahoo.gr
Greece, Heraklion Crete

Connie Stewart

Department of Mathematics and Statistics

Email: mtsagris@yahoo.gr
Canada, Saint John, New Brunswick

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.