🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The Groups of Basic Automorphisms of Complete Cartan Foliations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a complete Cartan foliation (M,F) we introduce two algebraic invariants g0(M,F) and g1(M,F) which we call structure Lie algebras. If the transverse Cartan geometry of (M,F) is effective then g0(M,F) = g1(M,F). Weprove that if g0(M,F) is zero then in the category of Cartan foliations the group of all basic automorphisms of the foliation (M,F) admits a unique structure of a finite-dimensional Lie group. In particular, we obtain sufficient conditions for this group to be discrete. We give some exact (i.e. best possible) estimates of the dimension of this group depending on the transverse geometry and topology of leaves. We construct several examples of groups of all basic automorphisms of complete Cartan foliations.

About the authors

K. I. Sheina

Department of Informatics, Mathematics and Computer Sciences

Author for correspondence.
Email: ksheina@hse.ru
Russian Federation, ul. Myasnitskaya 20, Moscow, 101000

N. I. Zhukova

Department of Informatics, Mathematics and Computer Sciences

Email: ksheina@hse.ru
Russian Federation, ul. Myasnitskaya 20, Moscow, 101000

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.