🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Orthogonal decomposition of the Gaussian measure


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ultrapower of real line, RU, where U is a nontrivial ultrafilter in the set the N of natural integers, is some realizations of the “non-standard expansion” *R of the set of real numbers. Due to “good” properties of the factorization of cartesian productwith respect to ultrafilter, ultraproducts hold a number of considerable value properties from the algebraic point of view. At the same time it is not any good “natural” (i.e. determined by the topology of factors) topology. In this article some properties of the Gaussian measure defined on ultraproduct of linear measurable spaces are investigated. In particular, we will give an example of a Gaussian not extreme measure. It will be defined on the linear measurable space which doesn’t have any topological structure. For the proof of many statements of the work the technics of the ultraproducts developed in work [1] is used.

About the authors

S. G. Haliullin

Department of Mathematical Statistics

Author for correspondence.
Email: Samig.Haliullin@kpfu.ru
Russian Federation, Kremlevskaya ul. 35, Kazan, Tatarstan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.