🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Finding minimal polynomials of algebraic numbers of the form tan2(π/n) using Tschirnhausen’s transform


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solutions of two problems are proposed based on the Tschirnhausen transform. The first problem is connected with the construction of minimal polynomials of the numbers of the form tan2(π/n) by means of the Tschirnhausen transform for all natural n > 2. The second problem consists in finding the exact roots of the equation x3 − 7x − 7 = 0. A solution of the problem is obtained from the fact that the roots of the equation produce the cyclotomic field Q7. Examples of construction of minimal polynomials are provided.

About the authors

I. G. Galyautdinov

Kazan Branch of Volga State University of Telecommunications and Informatics

Author for correspondence.
Email: ialee-4@mail.ru
Russian Federation, Kazan, 420061

E. E. Lavrentyeva

Kazan Federal University

Email: ialee-4@mail.ru
Russian Federation, Kazan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.