🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

An intermediate value theorem for face polytopes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper proves a theorem on polytopal fans and face polytopes that can be treated as an intermediate value theorem for face polytopes. According to this theorem if all fans FS obtained from a fan F by replacing one of its cones K with a subdivision S of K in some set H are polytopal, then the fan F is polytopal as well. Moreover, if PS, SH, are arbitrary face polytopes of the fans FS, then some positive combination of PS, SH, is a face polytope of the fan F. The reverse of the theorem is not true.

About the authors

M. N. Matveev

Moscow Institute of Physics and Technology

Author for correspondence.
Email: miklem@mail.mipt.ru
Russian Federation, Institutskii per. 9, Dolgoprudny, 141700

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.