№ 2 (2017)

Обложка

Весь выпуск

ТЕХНОЛОГИЯ

ОСОБЕННОСТИ ФОРМООБРАЗОВАНИЯ МАЛЫХ ОТВЕРСТИЙ В МЕДИ ПРИ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКЕ В ВОДНЫХ ХЛОРИДНЫХ РАСТВОРАХ

Рахимянов Х.М., Василевская С.И.

Аннотация

Рассмотрены вопросы назначения величины межэлектродного промежутка (МЭП) при электрохимической размерной обработке (ЭХРО) отверстий малого диаметра в хлоридных растворах обработки меди полым катодом - инструментом с соотношением внутреннего и наружного диаметра 0,26 / 0,46 мм. Установлено, что при прошивке отверстий на малых межэлектродных промежутках (0,05...0,1 мм) с давлением струи электролита Р = 0,3 МПа не обеспечивается точность копирования инструмента. Это объясняется тем, что ЭХРО меди в хлоридных растворах сопровождается образованием на поверхности труднорастворимой соли CuCl, препятствующей электрохимическому растворению металла под торцом катода - инструмента. Точность копирования инструмента на обрабатываемой поверхности достигается при увеличении МЭП до 0,2 мм. Однако увеличение МЭП приводит к снижению локализации процесса анодного растворения и, следовательно, к уменьшению скорости прошивки отверстия. Показано, что повышение давления струи электролита до 0,8 МПа при величине МЭП от 0,05 до 0,1 мм гарантирует точность формообразования отверстия. Отмечено, что повышение давления струи электролита интенсифицирует процесс депассивации анодной поверхности, что обеспечивает возможность обработки при малом значении МЭП с высокой степенью локализации процесса. Установлено, что при величинах МЭП, равных 0,3 мм при Р = 0,3 МПа и 0,1 мм при Р = 0,8 МПа, возможна реализация схемы электрохимической прошивки с непрерывной стабилизацией МЭП за счет перемещения одного из электродов.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):6-16
pages 6-16 views

ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ

ПРОЕКТИРОВАНИЕ КУЛАЧКОВОГО МЕХАНИЗМА С УЧЕТОМ ТЕХНОЛОГИЧЕСКОЙ НАГРУЗКИ И ЭНЕРГЕТИЧЕСКИХ ЗАТРАТ

Подгорный Ю.И., Скиба В.Ю., Кириллов А.В., Максимчук О.В., Скиба П.Ю.

Аннотация

Рассматриваются вопросы проектирования кулачковых механизмов. Анализ научной литературы по данному вопросу показывает, что в настоящее время синтез законов движения кулачковых механизмов производится в основном без учета энергетических затрат. Рассматриваются основные критерии, включающие фазовые углы, законы, представленные либо в аналитической форме, либо в виде таблиц профиля кулачка. Целью настоящей работы является разработка методики синтеза законов движения кулачкового механизма с учетом энергетических затрат от полезной нагрузки, момента сил инерции, сил упругости элементов механизма и энергии, развиваемой ведомым звеном. Актуальность исследования обусловлена отсутствием единой методики, позволяющей учитывать энергетические затраты при проектировании механизмов. При проведении исследований рассмотрена расчетная модель батанного механизма ткацкого станка типа СТБ. Для определения энергетических затрат механизма вычислены значения работы, израсходованной на преодоление сил сопротивления от действия технологической нагрузки, работы от сил инерции механизма, энергии, расходуемой на упругие деформации элементов механизма. При проведении расчетов использован математический пакет MathСad. Анализ результатов расчетов указывает, что определенные виды тканей при существующих в настоящее время параметрах конструкции батанного механизма вырабатываться не могут. В результате проведенных исследований предложена методика синтеза кулачковых механизмов для технологических машин, включающая определение энергетических затрат от полезной нагрузки, сил инерции, момента на ведомом валу кулачкового механизма. Теоретические исследования апробированы на модели конкретной машины - станок ткацкий типа СТБ. Синтезирован закон движения механизма прибоя уточных нитей. Предложен новый профиль кулачка в виде таблицы радиусов-векторов. Полученные результаты позволяют разграничить ассортиментные возможности ткацких машин по величине технологического усилия и рекомендовать предприятиям наиболее рациональные режимы работы оборудования.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):17-27
pages 17-27 views

ПРОЕКТИРОВАНИЕ И ИЗГОТОВЛЕНИЕ ДЕКОРАТИВНОЙ ШКАТУЛКИ ИЗ МЕТАЛЛА

Веселова Ю.В., Ложкина Е.А., Федосеева И.А.

Аннотация

Рассматриваются проблемы проектирования и создания одного из видов ювелирных изделий - декоративной шкатулки для драгоценностей, выполненной из металла. Подробно описана последовательность дизайн-проектирования - от выбора темы до изготовления изделия. Обоснована актуальность разрабатываемого изделия, проанализированы аналоги изделия, представленные на рынке современной продукции с точки зрения художественного решения, материала, конструкции. С учетом анализа достоинств и недостатков существующих аналогов разработан оригинальный эскиз проектируемой шкатулки, отвечающий эстетическим, конструктивным и функциональным требованиям дизайна. При создании шкатулки также были учтены эргономические факторы, предполагающие удобство пользования изделием. Обоснован выбор материала, исходя из свойств которого выбран технологический процесс, необходимый для изготовления данного вида шкатулки. При помощи программы Inventor была рассчитана масса изделия, а также произведен расчет на прочность шарнирного соединения шкатулки. Выполнены необходимые чертежи, мастер-модель для литья по выплавляемым моделям. В работе описан технологический процесс изготовления шкатулки, состоящий из трех основных этапов: 1) изготовление корпуса шкатулки; 2) нанесение декоративного покрытия; 3) сборка изделия. Рассматривается технология литья для единичного производства изделия. Реализованным результатом дизайн-проектирования стала изготовленная шкатулка для драгоценностей, основу художественного образа которой представили стилизованные фигуры двух жирафов со сплетенными шеями. Использование стилизованных фигурок животных и птиц для изготовления маленьких металлических шкатулок, украшенных эмалью и драгоценными вставками, считается модным трендом в настоящее время.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):28-37
pages 28-37 views

МАТЕРИАЛОВЕДЕНИЕ

ФОРМИРОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТИ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ПРИ ТЕРМОМЕХАНИЧЕСКОМ УПРОЧНЕНИИ

Иванов Ю.Ф., Громов В.Е., Кондратова О.А., Белов Е.Г., Костерев В.Б.

Аннотация

Методами современного физического материаловедения проведены исследования структуры, дефектной субструктуры, механических и трибологических свойств поверхности двутавровой балки из стали 09Г2С, формирующихся при термомеханическом упрочнении в потоке прокатного стана. Установлено качественное соответствие изменения микротвердости и скалярной плотности дислокаций по сечению профиля полки. Показано, что под действием остаточного тепла объема заготовки происходит релаксация дислокационной структуры, выражающаяся в снижении скалярной плотности дислокаций, разрушении малоугловых границ кристаллов мартенсита, выделении на дислокациях в объеме кристаллов мартенсита и по границам кристаллов частиц карбидной фазы. Отмечено, что природа γ → a превращения является ответственной за повышение прочности поверхностного слоя.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):38-44
pages 38-44 views

ЭЛЕКТРОИСКРОВОЕ СПЕКАНИЕ СМЕСЕЙ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ И КОМПОЗИТОВ С МЕТАЛЛИЧЕСКИМИ МАТРИЦАМИ: ОСОБЕННОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ И СВОЙСТВА СПЕЧЕННЫХ МАТЕРИАЛОВ

Дудина Д.В.

Аннотация

На примерах систем Ti3SiC2-Cu, Fe-Ag, NiO-Ni, Cu2O-Cu и Fe-Al проводится анализ некоторых особенностей поведения смесей порошков металлов и композитов с металлическими матрицами при электроискровом спекании. Обсуждаются физико-химические аспекты формирования контактов между композиционными агломератами, полученными механической обработкой порошковых смесей в высокоэнергетической мельнице. Рассматриваются условия эффективного восстановления оксидных пленок, присутствующих на металлических частицах, в условиях электроискрового спекания. В условиях, традиционно использующихся для консолидации металлических порошков методом электроискрового спекания, удаление оксидов происходит за счет их восстановления углеродом, присутствующим в камере установки электроискрового спекания. Анализируются возможности метода электроискрового спекания для получения композитов с металлическими матрицами, сочетающих различные механизмы упрочнения, а также для получения пористых материалов с высокими значениями открытой пористости.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):45-54
pages 45-54 views

ВЛИЯНИЕ НЕПРЕРЫВНОГО И ГАЗОЦИКЛИЧЕСКОГО ПЛАЗМЕННОГО АЗОТИРОВАНИЯ НА КАЧЕСТВО НАНОСТРУКТУРИРОВАННОЙ ПОВЕРХНОСТИ АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ

Макаров А.В., Гаврилов Н.В., Самойлова Г.В., Мамаев А.С., Осинцева А.Л., Саврай Р.А.

Аннотация

Изучено влияние комбинированной обработки, включающей наноструктурирующую фрикционную обработку скользящим индентором и последующее непрерывное и газоциклическое азотирование в плазме низкоэнергетического электронного пучка при температурах 450 и 500 °С, на состояние поверхностного слоя аустенитной стали AISI 321 (04Х17Н8Т). Особенностью непрерывного азотирования при высокой плотности потока ионов азота на поверхность и температуре 500 °С диффузионно-активной наноструктурированной поверхности со структурой a¢ мартенсита деформации является интенсивное образование пор и блистеров. Улучшение качества (уменьшение блистеринга, порообразования и шероховатости) азотированной поверхности стали, предварительно упрочненной фрикционной обработкой, достигается проведением азотирования в газоциклическом режиме и снижением температуры азотирования от 500 до 450 °С. Однако газоциклическое азотирование обеспечивает меньший уровень упрочнения наноструктурированной поверхности стали по сравнению с непрерывным азотированием.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):55-66
pages 55-66 views

ВЛИЯНИЕ НЕМЕТАЛЛИЧЕСКИХ ВКЛЮЧЕНИЙ НА СОПРОТИВЛЕНИЕ СТАЛИ РАЗРУШЕНИЮ ПРИ МНОГОКРАТНОМ ДИНАМИЧЕСКОМ СЖАТИИ

Попелюх А.И., Веселов С.В., Мункуева Д.Д., Тимонин В.В., Карпов В.Н.

Аннотация

Ресурс работы высокопроизводительных ударных машин, как правило, не превышает нескольких десятков часов машинного времени. Научные исследования показывают, что процесс разрушения деталей горных машин часто инициируют неметаллические включения и внутренние дефекты структуры стали. Одним из наиболее перспективных научных методов оценки влияния неметаллических включений является математическое моделирование. В работе проанализированы размер, форма и морфология неметаллических включений в десяти плавках стали 45. На основании полученных результатов проведено математическое моделирование интенсивности поля напряжений вблизи дефектов различного типа в условиях нагружения образцов динамическим сжатием. Достоверность данных численного моделирования подтверждена измерением фактической величины зональных напряжений первого рода методом рентгеноструктурного анализа. Установлено, что при динамическом сжатии вблизи пор и низкопрочных включений в основном материале формируются области с высоким уровнем локальных напряжений, при этом вблизи высокопрочных включений в граничной области основного материала величина напряжений незначительна. Для изготовления деталей ударных механизмов предложено использовать стали, в структуре которых при выплавке формируются включения, твердость которых превышает твердость матрицы.
Обработка металлов (технология • оборудование • инструменты). 2017;(2):67-78
pages 67-78 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».