Том 22, № 3 (2020)

Обложка

Весь выпуск

ТЕХНОЛОГИЯ

Обеспечение точности проволочно-вырезной электроэрозионной обработки изделий, выполненных из труднообрабатываемых материалов

Шлыков Е.С., Абляз Т.Р., Муратов К.Р.

Аннотация

Введение. С целью повышения эксплуатационных свойств выпускаемой номенклатуры изделий в машиностроении используются материалы, имеющие повышенные физико-механическими свойства. Применение таких материалов позволяет изготавливать изделия малых габаритов, но обладающих высокими функциональными возможностями. При обработке таких материалов происходит значительный износ режущего инструмента, а при обработке изделий сложного профиля необходимо применять дополнительную оснастку. Данные факторы увеличивают себестоимость изготовления годных изделий. Для обработки таких изделий целесообразно применять электрофизические методы обработки, одним из которых является технология проволочно-вырезной электроэрозионной обработки (ПВЭЭО). Статья посвящена  теоретическому и регрессионному моделированию величины ширины реза при ПВЭЭО труднообрабатываемых материалов. Предметами исследования являются: величина межэлектродного зазора, точность при ПВЭЭО труднообрабатываемых материалов. Цель работы – повышение точности процесса ПВЭЭО сложнопрофильных изделий, выполненных из труднообрабатываемых материалов. Методы. Экспериментальные исследования проводились по методу классического эксперимента и регрессионного анализа. Для проведения экспериментов использовали проволочно-вырезной электроэрозионный станок Electronica EcoCut. Эксперименты проводились на среднем режиме обработки: время включения импульсов – 10 мкс, коэффициент заполнения импульсами – 30 %, напряжение – 75 В. В процессе обработки использовалась латунная проволока bercocut (d = 0,25 мм) и чистая дистиллированная вода. Результаты и обсуждения. Получены теоретическая и регрессионная модель для расчета ширины реза при ПВЭЭО изделий, выполненных из труднообрабатываемых материалов. Показана зависимость параметра от режимов обработки и физико-механических свойств материала. Установлено, что при варьировании коэффициента заполнения Tau функция отклика изменяется согласно квадратичной зависимости. Максимальная величина ширины реза B = 350 мкм достигается при Tau = 40 % и времени включения импульсов Ton =15 мкс. Написана рабочая программа, с помощью которой возможно рассчитать значение ширины реза, а также величину коррекции, вносимой в рабочую программу для выполнения годного размера. Обеспечена точность изготовления детали «крайний лист статора». Данная технология внедрена при производстве изделий нефтедобывающего оборудования.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):6-17
pages 6-17 views

Механические и трибологические свойства металлической стенки, выращенной электродуговым способом в среде защитных газов

Кузнецов М.А., Данилов В.И., Крампит М.А., Чинахов Д.А., Слободян М.С.

Аннотация

Введение. В настоящее время одним из наиболее перспективных направлений реализации технологических процессов производства металлических изделий сложной конфигурации является аддитивное производство. В его основе лежит послойная наплавка металла в соответствии с трехмерной моделью, созданной посредством компьютерного проектирования. В качестве исходного материала используют металлические порошки или проволоку различных составов. Источником тепла служат электронный пучок, лазерный луч или электрическая дуга. Несмотря на существующее достаточно большое количество технологий выращивания металлических изделий сложной формы некоторые из них имеют очень высокую стоимость оборудования и соответственно высокую себестоимость. Поэтому разработка технологии и оборудования электродугового послойного выращивания металлических изделий является сложной актуальной задачей. Цель работы: исследование механических и трибологических свойств металлических изделий, выращенных электродуговым способом в среде защитных газов из углеродистой стали по разработанной технологии. В работе исследованы металлические вертикальные стенки, выращенные электродуговым послойным способом в среде защитных газов. Методами исследования являются механические испытания предела прочности, предела текучести и относительного удлинения выращенных образцов, а также трибологические свойства (площадь поверхности износа, коэффициент трения и амплитуда вибрационных ускорений). Результаты и обсуждение. Выявлено, что образцы, выращенные с использованием технологии аддитивного производства на основе электродуговой наплавки плавящимся электродом в среде активных газов, имеют механические свойства, соизмеримые с литым металлом. Установлено, что произошло уменьшение погонной энергии при выращивании металлической стенки по разработанной технологии за счет предварительного подогрева электродной проволоки до 400…600 °С путем установки дополнительного токоподвода, расположенного на расстоянии 250…400 мм от торца проволоки для пропускания подогревающего тока. В результате повысились трибологические свойства выращенных образцов и их износ стал более равномерным.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):18-32
pages 18-32 views

Исследование возможности чистовой лазерной обработки заготовок из алюминиевого сплава Д16

Кисель А.Г., Белан Д.Ю., Тодер Г.Б.

Аннотация

Введение: Одна из важнейших задач при производстве металлических деталей – обеспечение необходимого качества обработанной поверхности. Существует множество способов достижения требуемого качества, но наименее исследованным является лазерная микрообработка. Цель работы – экспериментальное определение возможности снижения шероховатости поверхности заготовки с помощью лазерной обработки. Методы. Лазерная обработка в данных исследованиях выполнялась с помощью системы лазерной маркировки (СЛМ) «ТурбоМаркер-В20». Идея исследований состоит в том, что с помощью лазерной обработки с рациональными режимами возможно уменьшить шероховатость поверхности заготовки за счет удаления вершин микронеровностей. При проведении исследований в качестве режимов лазерной обработки выбраны плотность  линий r, описываемых лазером при обработке, линий/мм, и мощность лазера N, %. Результаты и их обсуждение. В результате проведенных экспериментов и выполненных расчетов была построена поверхность отклика и установлена формула зависимости Raср = f(r; N). Оценка установленной зависимости показала, что снижения шероховатости можно достичь при следующих режимах: r = 120 линий/мм; N = 1…5 %. Затем выполнена лазерная обработка предварительно фрезерованных и шлифованных заготовок с полученными режимами. Основываясь на результатах экспериментальных исследований, представленных в данной статье, можно сделать следующие выводы: 1) лазерная обработка может быть применена с целью окончательной (финишной) обработки, так как позволяет снизить шероховатость поверхности фрезерованной заготовки из сплава Д16 на 23,8 %, а шлифованной – на 6,6 %; 2), несмотря на то что снижение шероховатости после обработки шлифованной заготовки незначительно, возможным является то, что применяемые режимы не были оптимальными для данных условий. Поэтому дальнейшие исследования следует направить на определение таких режимов, а также на установление физических процессов в зоне обработки и их влияния на заготовку.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):33-43
pages 33-43 views

ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ

Взаимосвязь температуры и силы резания с износом и вибрациями инструмента при токарной обработке металлов

Лапшин В.П., Христофорова В.В., Носачев С.В.

Аннотация

Введение. Процессы, протекающие в станке при резании металлов, взаимосвязаны друг с другом. В процессе резания сложная динамика обработки включает в себя как быстроизменяющиеся факторы, так и факторы, носящие более эволюционный (медленный) характер. Под такими факторами подразумеваем: изменения стационарных составляющих сил резания, температуры в зоне обработки и износ инструмента. На сегодня единой и непротиворечивой математической модели, описывающей такую взаимосвязь, не существует. Поэтому в статье предложен подход, основанный на обработке экспериментальных данных, полученных в серии экспериментов, позволяющий выявить структуру обратных связей, формируемых при резании и связывающих между собой подсистемы, описывающие силовую, тепловую и вибрационную реакцию со стороны процесса резания на формообразующие движения инструмента. Цель работы. За счет формирования непротиворечивой модели связи между подсистемами, описывающими силовую, тепловую и вибрационную реакцию со стороны процесса резания на формообразующие движения инструмента, получить описание механизма самоорганизации процесса резания в процессе эволюционных изменений инструмента. Такой механизм нужен для поиска некоторого режима функционирования системы резания, при котором может стабилизироваться дальнейший износ режущего клина, сила резания, температура в зоне резания и вибрации инструмента. В работе исследован процесс обработки металлов резание на токарном станке для случая продольного точения изделия. Методы исследования. Исследования состоят из серии натурных экспериментов на реальном оборудовании с использованием современного измерительного стенда STD.201-1, позволяющего одновременно измерять силовую, температурную и вибрационную составляющие реакции со стороны процесса резания на формообразующие движения инструмента. Для обработки и анализа полученных экспериментальных данных использовался пакет математических программ Matlab, в котором была разработаны подпрограмма, позволяющая провести спектральный анализ вибрационных сигналов, а также графическую интерпретацию измеренных величин. Результаты и обсуждение. Приведены результаты обработки экспериментальных данных, в частности, спектры вибрационных сигналов, получены зависимости сил и температуры от износа инструмента, а также выявлено влияние износа на вибрационную динамику процесса резания. Проведена оценка влияния энергии вибраций инструмента на температурное поле в зоне резания. Основным выводом по работе является выдвинутое нами положение о самоорганизации системы резания через процесс эволюции инструмента, выражающийся в износе режущего клина, целью которого служит формирование некоторого квазистационарного режима резания.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):44-58
pages 44-58 views

МАТЕРИАЛОВЕДЕНИЕ

Минералокерамический композиционный материал: синтез и фрикционные свойства

Болотов А.Н., Новиков В.В., Новикова О.О.

Аннотация

Введение. Состав и строение минералокерамических композиционных материалов оказывают большое влияние на их физико-механические и триботехнические свойства. Несмотря на большое их разнообразие, некоторые из них не имеют высоких триботехнических характеристик. Поэтому разработка технологии получения новых минералокерамических композиционных материалов является актуальной задачей. Предложено разработать основы технологии получения нового минералокерамического материала методом микродугового оксидирования спечённой алмазно-алюминиевой заготовки. Материал представляет собой матрицу из оксида алюминия и дисперсных включений металлизированного медью алмаза. Технологические особенности его получения и триботехнические характеристики еще недостаточно изучены. Цель работы: отработать этапы синтеза нового минералокерамического композиционного материала, исследовать его фрикционные свойства и установить область рационального применения. В работе исследованы режимы прессования, спекания заготовки и дальнейшего микроплазменного синтеза минералокерамического материала с различной относительной плотностью образцов, концентрацией и дисперсностью алмазов, степенью их металлизации медью. Исследованы триботехнические свойства полученных материалов. Методами исследования являются компрессионные испытания, исследования поверхности материала, сравнительные фрикционные испытания. Результаты и обсуждение. Выявлено, что основными факторами, определяющими работоспособность изделия, являются: относительная плотность образцов, степень металлизации алмазов медью и концентрации щелочи в электролите. Зернистость алмазов оказывает определяющее влияние на триботехнические характеристики и область практического применения минералокерамики. Материалы с зернистостью алмазов более 28/20 показали высокие режущие характеристики и хорошее алмазоудержание. Объемная режущая способность выше традиционных аналогов и не снижается с течением времени. Триботехнические испытания керамических материалов с зернистостью алмазов менее 20/14 показали наличие у них хороших антифрикционных свойств даже в отсутствие смазочных сред. Интенсивность изнашивания антифрикционной минералокерамики сравнима, а коэффициент трения существенно ниже, чем у оксидированного сплава Д16. Предложен критерий в виде критического номинального давления, определяющего переход от преимущественно упругого контакта к хрупкому разрушению антифрикционного минералокерамического материала. Созданные минералокерамические материалы с высокой зернистостью алмазов перспективно использовать в качестве инструментальных для прецизионной абразивной микрообработки твердых материалов. Из керамических материалов с малой зернистостью алмазов целесообразно изготавливать детали узлов трения, работающих в условиях дефицита смазочного материала.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):59-68
pages 59-68 views

Исследование фазового состава никелевого сплава Inconel 718, полученного аддитивной технологией

Рашковец М.В., Никулина А.А., Климова-Корсмик О.Г., Бабкин К.Д., Матц О.Э., Маццаризи М.

Аннотация

Введение. На протяжении последнего десятилетия аддитивное производство, основанное на создании изделий по электронной модели путем добавления материала слой за слоем, активно внедряется в производственный цикл изготовления сложнопрофильных изделий. Однако до сих пор не разработаны стандарты для материалов, сформированных по данным технологиям. Инженеры и ученые стремятся достигнуть механических свойств аддитивно полученных материалов, соответствующих свойствам материалов, сформированных стандартными способами. Жаропрочные никелевые сплавы, упрочняемые по твердорастворному и дисперсионному механизму, являются незаменимыми материалами в производстве авиационных турбореактивных двигателей. Помимо высоких механических свойств, достигаемых комплексной термической обработкой, такие детали зачастую обладают сложным профилем. Комбинирование новых аддитивных технологий с жаропрочными материалами является перспективным направлением как в промышленности, так и в науке. Понимание фазовых процессов, происходящих в материале со сложным тепловым влиянием при послойном производстве, активно исследуется инженерами. Цель работы – изучить фазовый состав жаропрочного никелевого сплава, изготовленного высокоскоростным прямым лазерным выращиванием в различных зонах слоя, сопоставив с полученными результатами механических испытаний. Методы исследования. Структура изучена методами оптической микроскопии и РЭМ. Фазовый состав проанализирован с использованием РФА, ПЭМ. Результаты микротвердости и относительного удлинения получены при комнатной температуре. Результаты.  Показано, что в материале отсутствуют поры и трещины. Структура сплава представлена типичным для аддитивного производства направленным дендритным строением с наличием переходной зоны. В различных зонах термического влияния происходят закономерные морфологические изменения фазы Лавеса и фазовые перераспределения карбидных включений. В материале не выявлены основные упрочняющие γ′/γ″ с фазы, при этом идентифицирована δ-фаза на начальной стадии формирования. Значения микротвердости сплава находятся в нижнем допустимом пределе. При повышенном относительном удлинении, значения ?в и ?т остаются низкими для данного материала по сравнению со стандартными технологиями.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):69-81
pages 69-81 views

Структура, фазовый состав и микромеханические свойства брикетированного алюминия

Пугачева Н.Б., Бабайлов Н.А., Быкова Т.М., Логинов Ю.Н.

Аннотация

Введение. Технология валкового брикетирования успешно применяется для утилизации отходов алюминиевых сплавов с целью последующего использования в металлургическом производстве при раскислении и легировании сталей, в алюмотермии, для получения цветных сплавов, а также при изготовлении сварочных электродов.  К получаемым заготовкам предъявляется требования сохранять свою целостность во время погрузки-разгрузки и транспортировки. Это обеспечивается выбором эффективных режимов прессования, обеспечивающих минимальную пористость. Кроме того, практически интересным является разработка технологии дополнительной обработки брикетов давлением и резанием, например, для формирования сварочных электродов. Цель работы: исследование химического и фазового состава брикетированного алюминия, определение характера распределения микротвердости и микромеханических свойств по сечению брикета. Методы исследования: измерение микротвердости и пористости, сканирующая электронная микроскопия и микрорентгеноспектральный анализ, инструментальное микроиндентирование. Результаты и обсуждение. Установлено, что брикетированный алюминий представляет собой композит с алюминиевой матрицей, наполнителем являются частицы оксидов Al2O3, MgO, SiO2 и графита, попавшего в материал из смазки, использованной при прокатке брикета в валковых прессах. В алюминиевой матрице неравномерно распределены дисперсные частицы интерметаллидов Al8FeMg4Si6 и Al15(Fe,Mn)3Si, которые являются упрочняющими фазами. Средняя плотность композита составила 2160 кг/м3, общая пористость не более 20 %. При этом центральная часть брикетированной ячейки твердостью 65 HV 0,1 плотная и не содержит пор. Поры присутствуют вблизи поверхности и имеют размеры 0,1…0,3 мм, что снижает твердость до 30 HV 0,1. Отдельные области композита отличаются более высокими по сравнению с основным материалом значениями микротвердости (до 140 НV 0,1) и нормального модуля упругости, снижением показателей пластичности и ползучести. Неравномерное распределение микромеханических свойств следует учитывать как при разработке технологии брикетирования, так и при дополнительной обработке давлением, а также при выборе способа резания.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):82-94
pages 82-94 views

Коррозионная стойкость детонационных покрытий Fe66Cr10Nb5B19 в условиях воздействия соляного тумана

Кучумова И.Д., Батраев И.С., Черкасова Н.Ю., Ухина А.В., Штерцер А.А., Хорхе А.М.

Аннотация

Введение. Разработка дизайна сплавов с высокой стеклообразующей способностью и исследование их физико-механических свойств явля.тся одними из актуальных направлений в материаловедении в настоящее время. Многокомпонентные сплавы на основе железа с высокой стеклообразующей способностью имеют высокую коррозионную стойкость и износостойкость, что делает их перспективными для нанесения на рабочие поверхности изделий, работающих в условиях абразивного износа и агрессивных сред. Методы газотермического напыления (плазменное напыление, детонационное напыление, высокоскоростное газопламенное напыление и др.) позволяют формировать покрытия с аморфной структурой из многокомпонентных сплавов на основе железа. Детонационное напыление вследствие особенностей процесса напыления позволяет формировать более качественные покрытия со структурой металлического стекла по сравнению с другими методами газотермического напыления. Цель работы: исследование влияния фазового состава детонационных покрытий из многокомпонентного сплава на основе железа на стойкость к атмосферной коррозии в условиях воздействия нейтрального соляного тумана. В работе исследованы детонационные покрытия из аморфного сплава Fe66Cr10Nb5B19, полученные при различном объеме взрывчатой смеси. Методами исследования являются испытания детонационных покрытий в моделируемых условиях воздействия атмосферной коррозии в камере соляного тумана по стандарту ASTM B117 в атмосфере распыляемого пятипроцентного раствора хлорида натрия в воде в течение 600 часов при комнатной температуре, а также проведение рентгенофазовых и металлографических исследований покрытий до и после испытаний. Результаты и обсуждение. Результаты исследования фазового состава и морфологии поверхности покрытий после испытаний свидетельствуют об их высокой коррозионной стойкости в нейтральном соляном тумане, содержащем большое количество анионов хлора. На поперечных сечениях покрытий отсутствуют следы распространения коррозии, что подтверждает эффективность применения детонационных покрытий со структурой металлического стекла из сплава Fe66Cr10Nb5B19 для защиты изделий, работающих в условиях повышенной влажности, без дополнительной герметизации поверхности.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):95-105
pages 95-105 views

Определение взаимосвязи фактора разнозернистости и скорости коррозии конструкционной стали

Соколов Р.А., Новиков В.Ф., Муратов К.Р., Венедиктов А.Н.

Аннотация

Введение. Оборудование, эксплуатирующееся на опасных производственных объектах, в большинстве случаев изготавливается из конструкционных сталей, которые подвержены сильным коррозионным разрушениям при контакте с агрессивными средами. В агрессивных средах процесс коррозионного разрушения материала имеет многосоставную природу. Многосоставность процессов коррозии до сих пор оставляет вопрос: а какие факторы в большей степени оказывают влияние на данные процессы. В литературных источниках в качестве основного коррозионно-определяющего фактора указывают размеры зеренной структуры. Однако кроме размеров зерен на коррозию влияет и соответствующий им фактор разнозернистости, который характеризует дисперсность системы в целом. Поэтому дифференциация факторов, влияющих на протекание коррозионных процессов, остается актуальной проблемой. Цель работы: проанализировать возможность применения фактора разнозернистости в качестве диагностического параметра для определения скорости коррозионного разрушения конструкционной стали. В работе исследованы термообработанные образцы стали 15ХСНД, 09Г2С и Ст3, изготовленные из листового проката. Методы исследования. Для исследования сталей 15ХСНД, 09Г2С и Ст3 в работе применялись: растровый электронный и оптический микроскоп – для изучения зеренной структуры и межзеренных границ; программный пакет SIAMS 700 – для нахождения границ и среднестатистических данных зеренной структуры; портативный рентгенофлюорисцентный химический анализатор – для определения химического состава исследуемых образцов; лабораторные весы с погрешностью измерения 0,001 гр – для измерения массы образцов. Результаты и обсуждения. Установлено, что для скорости коррозии конструкционных сталей и фактора разнозернистости наблюдается единая удовлетворительная линейная корреляционная зависимость, которая может быть использована для предсказания коррозионно-опасных состояний конструкций. Замечено, что выпадение некоторых значений из общей регрессионной кривой могут быть связаны с процессами уменьшения искажений в кристаллические решетки стали при определенной термической обработке. Выраженность этих процессов для рассматриваемых сталей может быть различной из-за наличия в их составе различного количества легирующих элементов.
Обработка металлов (технология • оборудование • инструменты). 2020;22(3):106-125
pages 106-125 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».