Современные методы изготовления сложнопрофильных электродов-инструментов для электроэрозионной обработки (обзор исследований)

Обложка

Цитировать

Полный текст

Аннотация

Введение. В современном машиностроении важную роль играет опытное производство. Технология копировально-прошивной электроэрозионной обработки (КПЭЭО) получила широкое распространение при обработке опытных деталей, изготавливаемых на потоках гибкого производства. Изготовление электродов-инструментов (ЭИ) является одним из основных этапов технологического цикла КПЭЭО. Цель работы. Обзор существующих исследований современных методов изготовления электродов-инструментов для электроэрозионной обработки. Методы исследования. Произведен обзор научной литературы на тему исследований в области электроэрозионной обработки, посвященных электродам-инструментам, преимущественно за последние 20 лет. Описаны различные конфигурации конструктивных элементов, обрабатываемых с помощью технологии КПЭЭО, а также конфигурации ЭИ для их обработки. Показаны зависимости влияния геометрических параметров ЭИ простейших конфигураций на выходные параметры КПЭЭО. Выделены основные группы методов изготовления ЭИ. Описаны ограничения, преимущества и недостатки методов, альтернативных традиционным. Выявлены основные тенденции развития современных методов изготовления ЭИ. Результаты и обсуждение. На основании обзора литературы, посвященной современным исследованиям в области электроэрозионной обработки, приведены современные тенденции развития конфигураций электродов-инструментов, выявлены проблемы изготовления сложнопрофильных электродов-инструментов традиционными методами. Установлено, что среди альтернативных методов изготовления электродов-инструментов наибольший интерес современных ученых вызывают литье по выплавляемым моделям, порошковая металлургия и аддитивные методы. Показано, что для каждого метода характерны свои преимущества и недостатки, подтвержденные рядом исследований. Выделены актуальные направления развития сложнопрофильных ЭИ и методов их изготовления: топологическая оптимизация электродов-инструментов, использование современных высокотехнологичных методов литья; расширение номенклатуры материалов ЭИ с повышенными электроэрозионными свойствами; оптимизация режимов порошковой металлургии, FDM-печати и селективного лазерного сплавления; повышение толщины и качества покрытий электродов-инструментов, полученных с применением технологий быстрого прототипирования.

Об авторах

Тимур Ризович Абляз

Пермский национальный исследовательский политехнический университет

Email: lowrider11-13-11@mail.ru
ORCID iD: 0000-0001-6607-4692
SPIN-код: 7038-0533
Scopus Author ID: 56042858500
ResearcherId: O-3065-2017
https://pstu.ru/basic/glossary/staff/?sid=1875

канд. техн. наук, доцент

Россия, 614990, Россия, г. Пермь, Комсомольский проспект, 29

Илья Владимирович Осинников

Пермский национальный исследовательский политехнический университет

Email: ilyuhaosinnikov@bk.ru
ORCID iD: 0009-0006-4478-3803
SPIN-код: 8770-1384
Scopus Author ID: 57215008365
ResearcherId: AHE-7173-2022
https://pstu.ru/basic/glossary/staff/-sid=63/?sid=-3442

Ассистент

Россия, 614990, Россия, г. Пермь, Комсомольский проспект, 29

Евгений Сергеевич Шлыков

Пермский национальный исследовательский политехнический университет

Email: Kruspert@mail.ru
ORCID iD: 0000-0001-8076-0509
SPIN-код: 3563-2987
Scopus Author ID: 56700243700
ResearcherId: G-9837-2019
https://pstu.ru/basic/glossary/staff/?sid=-966

канд. техн. наук

Россия, 614990, Россия, г. Пермь, Комсомольский проспект, 29

Карим Равилевич Муратов

Пермский национальный исследовательский политехнический университет

Email: Karimur_80@mail.ru
ORCID iD: 0000-0001-7612-8025
SPIN-код: 6608-6251
Scopus Author ID: 36096206900
ResearcherId: H-3735-2011
https://pstu.ru/basic/glossary/staff/?sid=1865

доктор техн. наук, профессор

Россия, 614990, Россия, г. Пермь, Комсомольский проспект, 29

Владимир Борисович Блохин

Пермский национальный исследовательский политехнический университет

Автор, ответственный за переписку.
Email: warkk98@mail.ru
ORCID iD: 0009-0009-2693-6580
SPIN-код: 5019-1979
Scopus Author ID: 59329692400
ResearcherId: KMY-6687-2024

учебный мастер

Россия, 614990, Россия, г. Пермь, Комсомольский проспект, 29

Список литературы

  1. Егорова А.О. Конкурентные стратегии предприятий машиностроения: современная российская практика // Современные наукоемкие технологии. Региональное приложение. – 2013. – № 2 (34). – С. 45–51.
  2. Гунина И.А., Савич Ю.А. К вопросу о проблемах повышения конкурентоспособности машиностроительных предприятий // Вестник Воронежского государственного технического университета. – 2017. – Т. 13, № 2. – С. 136–140.
  3. Сергеев А.А. Конкурентоспособность машиностроения: реальность и перспективы // Экономика. Налоги. Право. – 2014. – № 5. – С. 44–49.
  4. Головихин С.А., Данилкин В.А. Формирование спроса на наукоемкую машиностроительную продукцию путем обеспечения конкурентных преимуществ // Реформирование системы управления на современном предприятии: сборник материалов конференции. – Пенза: МНИЦ, 2003. – С. 29–30.
  5. Самочкин В.Н. Закономерность гибкого развития машиностроительного предприятия как основа его конкурентоспособности // Известия Тульского государственного университета. Экономические и юридические науки. – 2017. – № 4-1. – С. 236–241.
  6. Ширяева Ю.С., Оранова М.В. Современный взгляд на опытное производство и механизм управления им на промышленном предприятии // Вестник Нижегородского университета им. Н.И. Лобачевского. – 2007. – № 6. – С. 197–200.
  7. Феоктистов А.Н., Феоктистов К.А., Масюков А.А. Инновационные подходы к технологической подготовке производства в условиях опытного производства самолётов // Наука, техника и образование. – 2024. – № 4 (96). – С. 16–21. – EDN BADMWD.
  8. Фокина Д.А., Джамай Е.В., Зинченко А.С. Гибкие производственные системы как основа инновационного развития промышленных предприятий // Вестник Государственного университета просвещения. Серия: Экономика. – 2024. – № 2. – С. 113–121. – doi: 10.18384/2949-5024-2024-2-113-121. – EDN CLIJVH.
  9. Кужанбаев Р.Т. Особенности планирования и управления мультисерийным производством // Вестник евразийской науки. – 2019. – Т. 11, № 6. – С. 73.
  10. Blom R.J. Production and evaluation of rapid tooling for electric discharge machining using electroforming and spray metal deposition techniques: Master thesis. – Queensland: Queensland University of Technology, 2005. – 169 p.
  11. Recent trends and developments in the electrical discharge machining industry: A review / A.A. Kamenskikh, K.R. Muratov, E.S. Shlykov, S.S. Sidhu, A. Mahajan, Y.S. Kuznetsova, T.R. Ablyaz // Journal of Manufacturing and Materials Processing. – 2023. – Vol. 7 (6). – P. 204. – doi: 10.3390/jmmp7060204.
  12. Vijayan V., Saju K.K. A comprehensive review of performance improvement in electrical discharge machining and future research scopes: Enhancing performance through cutting-edge technologies // Johnson Matthey Technology Review. – 2025. – Vol. 69 (3). – P. 358–377. – doi: 10.1595/205651325X17309868513523.
  13. Митрюшин Е.А., Моргунов Ю.А., Саушкин С.Б. Унифицированные технологии изготовления штампов с применением электрофизических методов обработки // Металлообработка. – 2010. – № 2 (56). – С. 42–45.
  14. Тимощенко В.А. Использование электроэрозионного легирования в комплексе мер повышения износостойкости разделительных штампов // Электронная обработка материалов. – 2000. – № 4. – С. 12–16.
  15. Khan M.Y., Rao P.S. Electrical discharge machining: Vital to manufacturing industries // International Journal of Innovative Technology and Exploring Engineering. – 2019. – Vol. 8 (11). – P. 1516–1520. – doi: 10.35940/ijitee.K1516.0981119.
  16. Das S., Paul S., Doloi B. Feasibility assessment of some alternative dielectric mediums for sustainable electrical discharge machining: a review work // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2020. – Vol. 42 (148). – P. 1–21. – doi: 10.1007/s40430-020-2238-1.
  17. Study of the EDM process of bimetallic materials using a composite electrode tool / T.R. Ablyaz, E.S. Shlykov, K.R. Muratov, A.V. Zhurin // Materials. – 2022. – Vol. 15 (3). – doi: 10.3390/ma15030750.
  18. Schulze V., Ruhs C. On-machine measurement for the micro-EDM-milling process using a confocal white-light sensor // Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (EUSPEN). – Delft, 2010. – Vol. 2. – P. 37–40.
  19. Электроэрозионная и электрохимическая обработка: расчет, проектирование, изготовление и применение электродов-инструментов. В 2 ч. Ч. 1. Электроэрозионная обработка / под ред. А.Л. Лившица, А. Роша. – М., 1980. – 224 с.
  20. Interaction of machining parameters on MRR of sintered NdFeB processed by EDM-milling / X. Zhang, X. Bai, T. Yang, L. Li // Applied Sciences. – 2025. – Vol. 15 (9). – doi: 10.3390/app15094897.
  21. Uhlmann E., Polte M., Yabroudi S. Novel advances in machine tools, tool electrodes and processes for high-performance and high-precision EDM // Procedia CIRP. – 2022. – Vol. 113. – P. 611–635. – doi: 10.1016/j.procir.2022.10.080.
  22. The non-traditional and multi-energy field hybrid machining processes of cemented carbide: a comprehensive review / K. Zeng, X. Wu, F. Jiang, J. Shen, L. Zhu, Q. Wen, H. Li // The International Journal of Advanced Manufacturing Technology. – 2024. – Vol. 133. – P. 3561–3592. – doi: 10.1007/s00170-024-13791-6.
  23. Experimental analysis of wire-EDM on sub-cooled low-carbon tool steel using hybrid MARCOS method and honey badger algorithm / M. Priyadarshini, S. Pradhan, A. Barua, A. Behera, S. Kanchan // Surface Review and Letters. – 2023. – Vol. 31 (2). – doi: 10.1142/S0218625X24500495.
  24. Khan A., Ali M., Haque M.M. A study of electrode shape configuration on the performance of die sinking EDM // International Journal of Mechanical and Materials Engineering. – 2009. – Vol. 4 (1). – P. 19–23.
  25. Yamaguchi A., Okada A., Miyake T. Development of curved hole drilling method by EDM with suspended ball electrode – optimization of suspending parts structure and possibility of curved hole drilling // Seimitsu Kogaku Kaishi / Journal of the Japan Society for Precision Engineering. – 2015. – Vol. 81 (5). – P. 435–440. – doi: 10.2493/jjspe.81.435.
  26. Shah J. Optimization of process parameters for AISI 304 using micro-EDM drilling process: A review // Journal of Mechanical Engineering and Technology. – 2024. – Vol. 13 (1). – P. 26–37.
  27. A comprehensive review on powder mixed electrical discharge machining: advances in dielectric enhancement and machining efficiency / D. Kumar, V. Pathak, R. Singh, M. Dikshit // Discover Applied Sciences. – 2025. – Vol. 7 (1). – doi: 10.1007/s42452-025-07365-8.
  28. Puertas-Arbizu I., Salvide-González U., Luis-Pérez C. Study of spacing surface roughness parameters and proposal of a wear behaviour criterion in die-sinking EDM of cobalt-bonded tungsten carbide // The International Journal of Advanced Manufacturing Technology. – 2025. – Vol. 139. – P. 1–13. – doi: 10.1007/s00170-025-16091-9.
  29. Unravelling the analysis of electrical discharge machining process parameters, microstructural morphology, surface integrity, recast layer formation, and material properties: A comparative study of aluminum, brass, and Inconel 617 materials / K. Paswan, S. Sharma, C. Li, K. Mohammed, A. Kumar, M. Abbas, E. Tag-Eldin // Journal of Materials Research and Technology. – 2023. – Vol. 27. – P. 2881–2902. – doi: 10.1016/j.jmrt.2023.11.186.
  30. Self-adjusting EDM/ECM high speed drilling of film cooling holes / C. Li, B. Zhang, Y. Li, H. Tong, S. Ding, Z. Wang, L. Zhao // Journal of Materials Processing Technology. – 2018. – Vol. 262. – P. 95–103. – doi: 10.1016/j.jmatprotec.2018.06.026.
  31. The state of the art of electrical discharge drilling: a review / X. Mao, S. de Almeida, J. Mo, S. Ding // The International Journal of Advanced Manufacturing Technology. – 2022. – Vol. 121 (7–8). – P. 4919–4950. – doi: 10.1007/s00170-022-09549-7.
  32. Chuvaree S., Kanlayasiri K. Effects of side flushing and multi-aperture inner flushing on characteristics of electrical discharge machining macro deep holes // Metals. – 2021. – Vol. 11 (1). – doi: 10.3390/met11010148.
  33. Karim M.A., Jahan M.P. Electrical discharge machining technologies in the aerospace industry // Modern Manufacturing Processes for Aircraft Materials. – Elsevier, 2024. – P. 171–226. – doi: 10.1016/B978-0-323-95318-4.00007-0.
  34. Kumar R., Singh I. Productivity improvement of micro EDM process by improvised tool // Precision Engineering. – 2018. – Vol. 51. – P. 529–535. – doi: 10.1016/j.precisioneng.2017.10.008.
  35. Helical electrodes for electro-discharge drilling: experimental and CFD-based analysis of the influence of internal and external flushing geometries on the process characteristics / E. Uhlmann, M. Polte, S. Yabroudi, N. Gerhard, E. Sakharova, K. Thißen, W. Penske // Journal of Manufacturing and Materials Processing. – 2023. – Vol. 7 (6). – doi: 10.3390/jmmp7060217.
  36. Jamkamon K., Janmanee P. Improving machining performance for deep hole drilling in the electrical discharge machining process using a step cylindrical electrode // Applied Sciences. – 2021. – Vol. 11 (5). – doi: 10.3390/app11052084.
  37. Sahoo A., Mishra D. Experimental characteristic evaluation of micro hole EDM drilling of Ni51.58Ti48.34 alloy with copper electrode and response optimization using GRG assisted with // Journal of Engineering and Applied Science. – 2024. – Vol. 71 (1). – P. 1–22. – doi: 10.1186/s44147-024-00447-1.
  38. High speed short electric arc deep hole drilling experimental study based on tube electrode / G. Hu, F. Fu, S. Zhang, W. Gao, J. Zhang, J. Wang // The International Journal of Advanced Manufacturing Technology. – 2025. – Vol. 139. – P. 1087–1103. – doi: 10.1007/s00170-025-15827-x.
  39. Jamkamon K., Kumkoon P., Chuvaree S. Influence of electrical parameters on the machining performance in the small hole drilling by EDM process // Solid State Phenomena. – 2023. – Vol. 349. – P. 33–39. – doi: 10.4028/p-CtB8KO.
  40. Machining performance of silicon carbide ceramic in end electric discharge milling / R. Ji, Y. Liu, Y. Zhang, F. Wang // International Journal of Refractory Metals and Hard Materials. – 2011. – Vol. 29 (1). – P. 117–122. – doi: 10.1016/j.ijrmhm.2010.09.001.
  41. Патент № 2802609 C1 Российская Федерация, МПК B23H 7/32, B23H 9/14. Устройство для электроэрозионной прошивки отверстия электрод-инструментом: № 2022127775: заявл. 26.10.2022: опубл. 30.08.2023 / Т.Р. Абляз, Е.С. Шлыков, И.В. Осинников [и др.]; заявитель Пермский национальный исследовательский политехнический университет.
  42. Makireddi D., Puri Y., Ghuge V. Development of crank–connecting rod attachment for electric discharge machining of curved holes // Advances in Mechanical Engineering. – Singapore: Springer, 2021. – P. 777–783. – doi: 10.1007/978-981-15-3639-7_93.
  43. Okada A., Yamaguchi A., Ota K. Improvement of curved hole EDM drilling performance using suspended ball electrode by workpiece vibration // CIRP Annals. – 2017. – Vol. 66 (1). – P. 189–192. – doi: 10.1016/j.cirp.2017.04.125.
  44. Development of curved hole drilling method by EDM with suspended ball electrode-improvement in shape accuracy of bending holes using foil supporting guide / A. Yamaguchi, Y. Inaba, S. Shiraga, A. Okada // Seimitsu Kogaku Kaishi / Journal of the Japan Society for Precision Engineering. – 2021. – Vol. 87 (5). – P. 461–466. – doi: 10.2493/jjspe.87.461.
  45. Fundamental study on internal space forming by EDM / Y. Inaba, S. Li, A. Yamaguchi, A. Okada // Procedia CIRP. – 2020. – Vol. 95. – P. 215–219. – doi: 10.1016/j.procir.2020.01.156.
  46. Hsue A.W.J., Pan Y.D., Lu L.W. A novel string-bead EDM mechanism for dressing of the conformal cooling channel fabricated by the SLM-additive manufacture // Journal of Physics: Conference Series. – 2021. – Vol. 2020 (1). – doi: 10.1088/1742-6596/2020/1/012035.
  47. Grzesik W., Ruszaj A. Physical fundamentals of conventional and unconventional machining processes // Grzesik W., Ruszaj A. Hybrid manufacturing processes. – Cham: Springer, 2021. – P. 35–60. – doi: 10.1007/978-3-030-77107-2_4.
  48. Singh K., Singh K., Khan M. Investigation and optimization of process parameters in the electrical discharge machining process for Inconel 660 using response surface methodology // Future Technology. – 2025. – Vol. 4. – P. 22–29. – doi: 10.55670/fpll.futech.4.2.3.
  49. Особенности применения электродов-инструментов, изготовленных аддитивными технологиями, при электроэрозионной обработке изделий / Т.Р. Абляз, В.Б. Блохин, Е.С. Шлыков, К.Р. Муратов, И.В. Осинников // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 135–148. – doi: 10.17212/1994-6309-2024-26.3-135-148.
  50. Lozhkin D.V., Maksimov P.V. Topological optimization of a part taking into account technological constraints // IOP Conference Series: Materials Science and Engineering. – 2021. – Vol. 1100 (1). – doi: 10.1088/1757-899x/1100/1/012036.
  51. Даглдьян А.О., Ложкин Д.В., Максимов П.В. Методология топологической оптимизации изделий с ячеистыми структурами // Научно-технический вестник Поволжья. – 2022. – № 12. – С. 41–44.
  52. Ложкин Д.В., Максимов П.В. Проектирование облегченных изделий на основе методов топологической оптимизации // Математика и междисциплинарные исследования – 2021: материалы Всероссийской научно-практической конференции молодых ученых с международным участием. – Пермь, 2021. – С. 76–80.
  53. Использование топологической оптимизации и сетчатых микроструктур в проектировании деталей для аддитивного производства / П.В. Максимов, К.В. Фетисов, А.И. Курчев, А.С. Белоусов // СТИН. – 2021. – № 2. – С. 38–44.
  54. Ambrosi A., Shi R.R.S., Webster R.D. 3D-printing for electrolytic processes and electrochemical flow systems // Journal of Materials Chemistry A. – 2020. – Vol. 8 (42). – P. 21902–21929. – doi: 10.1039/D0TA07939A.
  55. Forner-Cuenca A., Brushett F.R. Engineering porous electrodes for next-generation redox flow batteries: recent progress and opportunities // Current Opinion in Electrochemistry. – 2019. – Vol. 18. – P. 113–122. – doi: 10.1016/j.coelec.2019.11.002.
  56. Haverkort J. A theoretical analysis of the optimal electrode thickness and porosity // Electrochimica Acta. – 2019. – Vol. 295. – P. 846–860. – doi: 10.1016/j.electacta.2018.10.065.
  57. Roy T., Salazar de Troya M.A., Beck V.A. LLNL/TOPE: topology optimization for porous electrodes // Zenodo. – 2022. – doi: 10.5281/zenodo.6366849.
  58. Topology optimization for the design of porous electrodes / T. Roy, M.A. Salazar de Troya, M.A. Worsley, V.A. Beck // Structural and Multidisciplinary Optimization. – 2022. – Vol. 65. – Art. 171. – doi: 10.1007/s00158-022-03249-2.
  59. D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling / X. Lu, A. Bertei, D.P. Finegan, C. Tan, S.R. Daemi, J.S. Weaving, K.B. O’;Regan, T.M.M. Heenan, G. Hinds, E. Kendrick, D.J.L. Brett, P.R. Shearing // Nature Communications. – 2020. – Vol. 11. – doi: 10.1038/s41467-020-15811-x.
  60. Park S.H., Goodall G., Kim W.S. Perspective on 3D-designed micro-supercapacitors // Materials & Design. – 2020. – Vol. 193. – doi: 10.1016/j.matdes.2020.108797.
  61. Strategies and challenge of thick electrodes for energy storage: A review / J. Zheng, G. Xing, L. Jin, Y. Lu, N. Qin, S. Gao, J. Zheng // Batteries. – 2023. – Vol. 9 (3). – doi: 10.3390/batteries9030151.
  62. Goiogana M., Elkaseer A. Self-flushing in EDM drilling of Ti6Al4V using rotating shaped electrodes // Materials. – 2019. – Vol. 12 (6). – doi: 10.3390/ma12060989.
  63. Insight into various casting material selections in rapid investment casting for making EDM electrodes / T.T. Nguyen, V.-T. Nguyen, V.T. Tran, A.T. Le, T.D. Nguyen, Q.D. Huynh, M.T. Ho, M.P. Dang, H.G. Le, V.T.T. Nguyen // Micromachines. – 2025. – Vol. 16 (5). – doi: 10.3390/mi16050595.
  64. A critical insight into the use of FDM for production of EDM electrode / A. Equbal, M.I. Equbal, I.A. Badruddin, A.A. Algahtani // Alexandria Engineering Journal. – 2022. – Vol. 61 (5). – P. 4057–4066. – doi: 10.1016/j.aej.2021.09.033.
  65. Equbal A., Equbal M.I., Sood A.K. An investigation on the feasibility of fused deposition modelling process in EDM electrode manufacturing // CIRP Journal of Manufacturing Science and Technology. – 2019. – Vol. 26. – P. 10–25. – doi: 10.1016/j.cirpj.2019.07.001.
  66. Khan M., Rao P.S., Pabla B.S. On the use of copper tool developed by Atomic Diffusion Additive Manufacturing (ADAM) process for electrical discharge machining // E3S Web of Conferences. – 2023. – Vol. 455. – doi: 10.1051/e3sconf/202345502014.
  67. Purwar U., Javed A., Vidya S. A review on research aspects and trends in rapid prototyping and tooling assisted investment casting // Materials Today: Proceedings. – 2021. – Vol. 46 (11). – P. 6704–6707. – doi: 10.1016/j.matpr.2021.04.172.
  68. Innovative electrode tool manufacturing methods for electrode discharge machining / M. Sugavaneswaran, R.A. John, H. Bhagywani, V. Wilson, J. Swaminathan, S. Selvaraj // Artificial Intelligence in Material Science. – Boca Raton: CRC Press, 2024. – P. 81–107. – doi: 10.1201/9781003452515-5.
  69. Significance of the powder metallurgy approach and its processing parameters on the mechanical behavior of magnesium-based materials / S. Sharma, S. Gajevic, L. Sharma, D.G. Mohan, Y. Sharma, M. Radojkovic, B. Stojanovic // Nanomaterials. – 2025. – Vol. 15 (2). –doi: 10.3390/nano15020092.
  70. A review of electrode manufacturing methods for electrical discharge machining: current status and future perspectives for surface alloying / E. Garba, A.M. Abdul-Rani, N.A. Yunus, A.A.A. Aliyu, I.A. Gul, M. Al-Amin, R.A. Aliyu // Machines. – 2023. – Vol. 11 (9). – doi: 10.3390/machines11090906.
  71. Sundaram C., Sivasubramanian R., Sivakumar M. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process // Carbon – Science and Technology. – 2014. – Vol. 6 (4). – P. 34–40.
  72. Investigation of controlled microrelief formation on products obtained by selective laser melting using copy-penetrating electro-erosion processing / T.R. Ablyaz, E.S. Shlykov, K.R. Muratov, V.B. Blokhin, I.V. Osinnikov, V.V. Shiryaev // Russian Engineering Research. – 2024. – Vol. 44 (12). – P. 1823–1826. – doi: 10.3103/S1068798X24703076.
  73. Equbal A., Equbal M.I., Sood A.K. PCA-based desirability method for dimensional improvement of part extruded by fused deposition modeling technology // Progress in Additive Manufacturing. – 2019. – Vol. 4 (3). – P. 269–280. – doi: 10.1007/s40964-018-00072-4.
  74. Evaluating machining performance of acrylonitrile-butadiene-styrene (ABS) based electrical discharge machining (EDM) electrodes fabricated by fused deposition modelling (FDM) followed by a novel metallization method / A. Equbal, S. Ahmad, I. Badruddin, Z. Khan, S. Kamangar, J. Syed // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2023. – Vol. 238 (2). – P. 209–222. – doi: 10.1177/09544054221151093.
  75. Shirbhate N.J., Vinchurkar S.M., Borade A.B. FDM technology for EDM electrode fabrication: progress, prospects, and perspectives // International Journal of Mechanical Engineering. – 2024. – Vol. 11 (9). – P. 11–27. – doi: 10.14445/23488360/IJME-V11I9P102.
  76. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization / J. Wang, R. Zhu, Y. Liu, L. Zhang // Advanced Powder Materials. – 2023. – Vol. 2 (4). – doi: 10.1016/j.apmate.2023.100137.
  77. Electric discharge machining – A potential choice for surface modification of metallic implants for orthopedic applications: a review / C. Prakash, H.K. Kansal, B. Pabla, S. Puri, A. Aggarwal // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2016. – Vol. 230 (2). – P. 331–353. – doi: 10.1177/0954405415579113.
  78. Fefar S.D., Karajagikar M.J.S. Study and analysis of metallized electrode fabricated with FDM rapid prototyping technique for electro discharge machining (EDM) // Proceedings of the 5th International & 26th All India Manufacturing Technology Design and Research Conference (AIMTDR 2014). – 2014. – P. 37–42.
  79. Surface modification of strenx 900 steel using electrical discharge alloying process with Cu-10Ni-Crx powder metallurgy sintered electrode / S. Sridhar, S.V. Valeti, V. Koti, S. Sathish, R.R. Chand, N.S. Sivakumar, M. Mahesh., R. Subbiah, G. Veerappan // Materials Research. – 2022. – Vol. 25. – doi: 10.1590/1980-5373-MR-2021-0390.
  80. Danade U.A., Londhe S.D., Metkar R.M. Machining performance of 3D-printed ABS electrode coated with copper in EDM // Rapid Prototyping Journal. – 2019. – Vol. 25 (7). – P. 1224–1231. – doi: 10.1108/RPJ-11-2018-0297.
  81. Dürr H., Pilz R., Eleser N.S. Rapid tooling of EDM electrodes by means of selective laser sintering // Computers in Industry. – 1999. – Vol. 39 (1). – P. 35–45. – doi: 10.1016/S0166-3615(98)00123-7.
  82. Performance of sinking EDM electrodes made by selective laser sintering technique / F.L. Amorim, A. Lohrengel, N. Müller, G. Schäfer, T. Czelusniak // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65 (9–12). – P. 1423–1428. – doi: 10.1007/s00170-012-4267-0.
  83. Electro-discharge machining using copper-coated additively-manufactured AlSi10Mg electrodes / A. Sahu, S. Mahapatra, A. Patterson, M. Leite, P. Peças, Y. Singh, S. Sahoo // Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. – 2024. – Vol. 239 (8). – P. 1462–1471. – doi: 10.1177/14644207241293919.
  84. A study in EDM electrode manufacturing using additive manufacturing / R. Mohije, H. Titre, V. Gohil, D.B. Meshram // Materials Today: Proceedings. – 2023. – doi: 10.1016/j.matpr.2023.01.044.
  85. Amorim F.L., Czelusniak T., Higa C.F. Producing sinking EDM electrodes using selective laser sintering technique // 7th Brazilian Congress on Manufacturing Engineering. – Penedo, Brazil, 2013. – P. 1–10.
  86. Torres A., Luis C.J., Puertas I. Analysis of the influence of EDM parameters on surface finish, material removal rate, and electrode wear of an INCONEL 600 alloy // The International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 80 (1–4). – P. 123–140. – doi: 10.1007/s00170-015-6974-9.
  87. A study on the SLS manufacturing and experimenting of TiB2-CuNi EDM electrodes / F.L. Amorim, A. Lohrengel, G. Schäfer, T. Czelusniak // Rapid Prototyping Journal. – 2013. – Vol. 19 (6). – P. 418–429. – doi: 10.1108/RPJ-03-2012-0019.
  88. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering / T. Czelusniak, F.L. Amorim, C.F. Higa, A. Lohrengel // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 72 (9). – P. 1503–1512. – doi: 10.1007/s00170-014-5765-z.
  89. Harris R.A., Hague R.J.M., Dickens P.M. The structure of parts produced by stereolithography injection mould tools and the effect on part shrinkage // International Journal of Machine Tools and Manufacture. – 2004. – Vol. 44 (1). – P. 59–64. – doi: 10.1016/j.ijmachtools.2003.08.007.
  90. Harris R.A., Newlyn H.A., Dickens P.M. Part shrinkage anomalies from stereolithography injection mould tooling // International Journal of Machine Tools and Manufacture. – 2003. – Vol. 43 (9). – P. 879–887. – doi: 10.1016/S0890-6955(03)00080-4.
  91. Noguchi H., Nakagawa T. Manufacturing of high precision forming tool transferred from laser stereolithography models by powder casting method // Computers in Industry. – 1999. – Vol. 39 (1). – P. 55–60.
  92. Chan S.F., Law C.K., Wong T.T. Re-engineering the roto-casting mould making process // Journal of Materials Processing Technology. – 2003. – Vol. 139 (1–3). – P. 527–534. – doi: 10.1016/S0924-0136(03)00532-6.
  93. Leu M.C., Yang B., Yao W. Feasibility study of EDM tooling using metalized stereolithography models // Society of Manufacturing Engineers (SME) Engineering Technical Paper. MR98-180. – SME, 1998. – P. 1–6.
  94. Jensen K.L., Hovtun R. Making electrodes for EDM with rapid prototyping // 2nd European Conference of Rapid Prototyping. – University of Nottingham, 1993. – P. 221–233.
  95. A review on additively manufactured electrodes for use in electro-discharge process / E. Garba, A. Majdi, A. Azeez, A.A. Aliyu, I. Gul, R. Aliyu // Journal of Electrical Systems. – 2024. – Vol. 20 (10s). – P. 6919–6930.
  96. Electrical discharge machining by rapid tools prepared by micro stereo-lithography process with copper metallization / A. Sahu, S. Mahapatra, A. Martin, A. Schubert, M. Leite, P. Peças // Scientific Reports. – 2025. – Vol. 15. – Art. 22667. – doi: 10.1038/s41598-025-07020-7.
  97. Identifying adhesion characteristics of metal-polymer interfaces: Recent advances in the case of electroplated acrylonitrile butadiene styrene / A. Yudhanto, X. Li, R. Tao, R. Melentiev, G. Lubineau // Materials Today Communications. – 2023. – Vol. 35. – doi: 10.1016/j.mtcomm.2023.106218.
  98. Mandal P., Chatterjee S., Chakraborty S. Bi-objective optimization of an EDM process with Cu-MWCNT composite tool using single-valued neutrosophic grey relational analysis // World Journal of Engineering. – 2025. – Vol. 22 (3). – P. 472–481. – doi: 10.1108/WJE-10-2023-0443.
  99. Constructing antibacterial responsive multi-functionalized agent CSA13 loaded on a hydroxyapatite-TiO2 nanotube network / S. Swain, M. Pradhan, S. Das, T. Rautray // Materials Chemistry and Physics. – 2025. – Vol. 333. – doi: 10.1016/j.matchemphys.2024.130337.
  100. Wang L.-N., Luo J.-L. Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment // Materials Characterization. – 2011. – Vol. 62 (11). – P. 1076–1086. – doi: 10.1016/j.matchar.2011.08.002.
  101. Anil D., Çogun C. Performance of copper-coated stereolithographic electrodes with internal cooling channels in electric discharge machining (EDM) // Rapid Prototyping Journal. – 2008. – Vol. 14. – P. 202–212. – doi: 10.1108/13552540810896157.
  102. Equbal A., Sood A.K. Problems and challenges in EDM electrode fabrication using RP: A critical review // World Applied Sciences Journal. – 2013. – Vol. 28. – P. 1127–1133. – doi: 10.5829/idosi.wasj.2013.28.08.1461.
  103. Reddy G.K., Esanakula J.R. Optimization of operating parameters of wire EDM using design of experiments criteria // International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS), Erode, India. – IEEE, 2023. – P. 1504–1509. – doi: 10.1109/ICSSAS57918.2023.10331679.
  104. Residual stress and its modification strategies in the surface/sub-surface layer of components machined by electrical discharge machining: a review / X. Duan, K. Saxena, J. Wang, M.H. Arshad, I. Ayesta, Y. Wang, D. Reynaerts, X. Yang // The International Journal of Advanced Manufacturing Technology. – 2025. – Vol. 139. – P. 41–58. – doi: 10.1007/s00170-025-15861-9.
  105. Improving the performance of EDM through relief-angled tool designs / N. Mufti, M. Rafaqat, N. Ahmed, M. Saleem, A. Hussain, A. Al-Ahmari // Applied Sciences. – 2020. – Vol. 10 (7). – Art. 2432. – doi: 10.3390/app10072432.
  106. Review on characterization, impacts and optimization of EDM parameters on composite structure in additive manufacturing / L. Selvarajan, K. Venkataramanan, K.P. Srinivasa Perumal, S. Alghanmi, S. Paulraj, V. Ellappan, K. Venkatesh, B. Choudhury, S. Jayamurugan, G. Sakthivel, N. Kasthuri // Progress in Additive Manufacturing. – 2025. – Vol. 10. – P. 4573–4624. – doi: 10.1007/s40964-024-00907-3.
  107. Kumar P., Shekhar A., Yadav S.K.S. Experimental analysis of electrical discharge drilling (EDD) of carbon-carbon composite // Materials Today: Proceedings. – 2020. – Vol. 22. – P. 3106–3115. – doi: 10.1016/j.matpr.2020.03.447.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».