Влияние борирования и алитирования на структуру и микротвердость низкоуглеродистых сталей

Обложка

Цитировать

Полный текст

Аннотация

Введение. Борирование и алитирование являются одними из наиболее эффективных методов повышения эксплуатационных свойств (коррозионная стойкость, жаро- и износостойкость) деталей машин и инструментов. Твердофазные способы проведения данных методов химико-термической обработки (ХТО) требуют длительной выдержки при высокой температуре, что отрицательно влияет на структуру и свойства материала основы. В связи с эти подбор обоснованных температурно-временных параметров процессов твердофазного борирования и алитирования является актуально задачей. Цель настоящей работы заключается в оценке влияния процессов низкотемпературного борирования и алитирования на структуру и микротвердость диффузионных слоев на поверхности низкоуглеродистых сталей. В работе рассмотрены две марки сталей с содержанием углерода до 0,4 %: низкоуглеродистая сталь Ст3 и легированная сталь 3Х2В8Ф. Использование второй стали вызвано необходимостью выявить влияние легирующих элементов в стали на толщину диффузионных слоев и их состав. В качестве источников бора и алюминия выбраны порошковые смеси на основе карбида бора и алюминия. Результаты и обсуждения. Установлено, что при температуре процесса 900 °С и выдержке 2 часа после борирования на поверхности обеих сталей образуются бориды железа. При этом на стали Ст3 рентгенофазовым анализом (РФА) обнаружено два борида: FeB и Fe2B, а на стали 3Х2В8Ф – только фаза Fe2B. После алитирования обеих сталей образуется алюминий, содержащий фазы, такие как Al5Fe2, Na3AlF6 и Al2O3. Толщина полученного диффузионного слоя на Ст3 после борировании составляет 35 мкм, при алитировании – 65 мкм. Толщина диффузионного слоя на стали 3Х2В8Ф равна 15 мкм после борирования и 50 мкм после алитирования, что значительно меньше, чем на углеродистой стали, и, очевидно, связано с влиянием легирующих элементов. ХТО привела к значительному повышению микротвердости поверхности образцов. Так, максимальная микротвердость стали Ст3 возросла до 1920 HV, а стали 3Х2В8Ф до 1685 HV после борирования. Микротвердость после алитирования сопоставима для обеих сталей и равна 1000…1100 HV. Элементный анализ верхних участков диффузионных слоев показал соответствие содержания бора (7…9 %) и алюминия (50…53 %) обнаруженным РФА боридам и алюминидам железа. Во всех случаях наблюдается плавное снижение диффундирующих элементов по направлению от поверхности к основе.

Об авторах

П. А. Гуляшинов

Email: gulpasha@mail.ru
канд. техн. наук, Байкальский институт природопользования Сибирского отделения Российской академии наук, ул. Сахьяновой, 6, г. Улан-Удэ, 670047, Россия, gulpasha@mail.ru

У. Л. Мишигдоржийн

Email: undrakh@ipms.bscnet.ru
канд. техн. наук, Институт физического материаловедения Сибирского отделения Российской академии наук, ул. Сахьяновой 6, г. Улан-Удэ, 670047, Россия, undrakh@ipms.bscnet.ru

Н. С. Улаханов

Email: nulahanov@mail.ru
1. Институт физического материаловедения Сибирского отделения Российской академии наук, ул. Сахьяновой 6, г. Улан-Удэ, 670047, Россия; 2. Восточно-Сибирский государственный университет технологий и управления, ул. Ключевская 40В, г. Улан-Удэ, 670013, Россия; nulahanov@mail.ru

Список литературы

  1. Ворошнин Л.Г., Менделеева О.Л., Сметкин В.А. Теория и технология химико-термической обработки. – М.: Новое знание, 2010. – 304 с. – ISBN 978-5-94735-149-1.
  2. Kulka M. Trends in thermochemical techniques of boriding // Kulka M. Current trends in boriding: Techniques. – Cham, Switzerland: Springer, 2019. – P. 17–98. – (Engineering materials). – doi: 10.1007/978-3-030-06782-3_4.
  3. Atul S.C., Adalarasan R., Santhanakumar M. Study on slurry paste boronizing of 410 martensitic stainless steel using taguchi based desirability analysis (TDA) // International Journal of Manufacturing, Materials, and Mechanical Engineering. – 2015. – Vol. 5. – P. 64–77. – doi: 10.4018/IJMMME.2015070104.
  4. Nakajo H, Nishimoto A. Boronizing of CoCrFeMnNi high-entropy alloys using spark plasma sintering // Journal of Manufacturing and Materials Processing. – 2022. – Vol. 6. – P. 29. – doi: 10.3390/jmmp6020029.
  5. Campos-Silva I.E., Rodriguez-Castro G.A. Boriding to improve the mechanical properties and corrosion resistance of steels // Thermochemical Surface Engineering of Steels. – 2015. – Vol. 62. – P. 651–702. – doi: 10.1533/9780857096524.5.651.
  6. E?ect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications / M. Salem, S. Le Roux, G. Dour, P. Lamesle, K. Choquet, F. Rézaï-Aria // International Journal of Fatigue. – 2019. – Vol. 119. – P. 126–138. – doi: 10.1016/j.ijfatigue.2018.09.018.
  7. Formation and phase transformation of aluminide coating prepared by low-temperature aluminizing process / Y. Sun, J. Dong, P. Zhao, B. Dou // Surface and Coatings Technology. – 2017. – Vol. 330. – P. 234–240. – doi: 10.1016/j.surfcoat.2017.10.025.
  8. Повышение электрической прочности ускоряющего зазора в источнике электронов с плазменным катодом / В.И. Шин, П.В. Москвин, М.С. Воробьев, В.Н. Девятков, С.Ю. Дорошкевич, Н.Н. Коваль // Приборы и техника эксперимента. – 2021. – № 2. – С. 69–75. – doi: 10.31857/S0032816221020191.
  9. Разработка физических основ комплексного электронно-ионно-плазменного инжиниринга поверхности материалов и изделий / Ю.Ф. Иванов, Н.Н. Коваль, Е.А. Петрикова, О.В. Крысина, В.В. Шугуров, Ю.Х. Ахмадеев, И.В. Лопатин, А.Д. Тересов, О.С. Толкачев // Наукоемкие технологии в проектах РНФ. Сибирь / под ред. С.Г. Псахье, Ю.П. Шаркеева. – Томск, 2017. – Гл. 1. – С. 5–35. – ISBN 978-5-89503-607-5.
  10. Эволюция структуры поверхностного слоя стали, подвергнутой электронно-ионно-плазменным методам обработки / под ред. Н.Н. Коваля, Ю.Ф. Иванова. – Томск: Изд-во НТЛ, 2016. – 298 с. – ISBN 978-5-89503-577-1.
  11. Sizov I.G., Smirnyagina N.N., Semenov A.P. The structure and properties of boride layers obtained as a result of electron-beam chemical-thermal treatment // Metal Science and Heat Treatment. – 2001. – Vol. 11. – P. 45–46.
  12. Zenker R. Electron beam surface technologies // Encyclopedia of Tribology / Q.J. Wang and Y.-W. Chung (Eds.). – Boston, MA: Springer, 2013. – ISBN 978-0-387-92898-2. – doi: 10.1007/978-0-387-92897-5_723.
  13. Microstructural and mechanical properties of B-Cr coatings formed on 145Cr6 tool steel by laser remelting of diffusion borochromized layer using diode laser / A. Bartkowska, D. Bartkowski, D. Przestacki, J. Hajkowski, A. Miklaszewski // Coatings. – 2021. – Vol. 11. – P. 608. – doi: 10.3390/coatings11050608.
  14. Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing / U. Mishigdorzhiyn, Y. Chen, N. Ulakhanov, H. Liang // Lubricants. – 2020. – Vol. 8, iss. 3. – P. 26. – doi: 10.3390/lubricants8030026.
  15. Гуляшинов П.А., Мишигдоржийн У.Л., Улаханов Н.С. Влияние механоактивации порошковой смеси на структуру и свойства бороалитированных малоуглеродистых сталей // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 4. – С. 151–162. – doi: 10.17212/1994-6309-2020-22.4-151-162.
  16. Рябов В.Р. Алитирование стали. – М.: Металлургия, 1973. – 240 с.
  17. Даненко В.Ф., Гуревич Л.М., Понкратова Г.В. О влиянии алитирования на структуру и свойства стали Ст3 // Известия ВолгГТУ. – 2014. – № 9. – С. 30–34.
  18. Скориков А.В., Ульяновская Э.В. Кинетика процесса поверхностного алитирования порошковых сталей // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. – 2018. – № 3 (199). – С. 134–139. – doi: 10.17213/0321-2653-2018-3-134–139.
  19. Структура и фазовый состав защитных покрытий на стали, полученных методами жидкофазного алитирования / И.Г. Бродова, И.Г. Ширинкина, Ю.П. Зайков, В.А. Ковров, Ю.М. Штефанюк, В.В. Пингин, Д.А. Виноградов, М.В. Голубев, Т.И. Яблонских, В.В. Астафьев // Физика металлов и металловедение. – 2015. – Т. 116, № 9. – С. 928–936. – doi: 10.7868/S0015323015090041.
  20. Jurci P., Hudáková M. Diffusion boronizing of H11 hot work tool steel // Journal of Materials Engineering and Performance. – 2011. – Vol. 20. – P. 1180–1187. – doi: 10.1007/s11665-010-9750-x.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».