Development of an assessment method for pickup formation on furnace rolls

Cover Page

Cite item

Abstract

Introduction. During the recrystallization annealing of cold-rolled electrical and automotive steels, the formation of pickups on the surface of furnace rolls presents a significant issue, as they lead to surface damage of the steel strip in the form of indentations. The focus of the present study is the evaluation of this defect. Methods. To this end, a laboratory-based methodology was developed to assess the tendency of furnace rolls to form pickups. The method replicates the contact interaction between the furnace roll and the steel strip under real annealing conditions, taking into account the applied contact pressure, a temperature range of 700–900 °C, the (H2–N2) furnace atmosphere, and a humidity level arising from the presence of oxygen adsorbed on the steel strip. To validate the method’;s reliability, a comparative analysis was conducted between pickups formed on the roll surface after industrial operation and those generated under laboratory conditions in the contact zone between steel samples made of roll and strip materials. The analysis employed optical microscopy, X-ray diffraction, and scanning electron microscopy. Results and discussion. The study confirmed that the developed methodology produces pickups on the specimen surfaces with morphology, chemical composition, and phase structure closely resembling those observed on the furnace rolls. A comparative assessment of the pickup formation rate between a typical furnace roll material (EI 283 steel) and a NiCrAlY coating applied by plasma spraying revealed that the pickup formation rate for the EI 283 steel was an order of magnitude higher. The validated methodology can thus be used to evaluate the effectiveness of strategies aimed at mitigating pickup formation on furnace rolls under long-term high-temperature contact conditions.

About the authors

Kirill A. Bersenev

M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch)

Email: bersenev@imp.uran.ru
ORCID iD: 0009-0004-5505-3000
SPIN-code: 6216-5378
https://www.researchgate.net/profile/Kirill-Bersenev

Junior researcher

Russian Federation, 620108, Russian Federation, Ekaterinburg, 18 S. Kovalevskaya st.

Mikhail P. Puzanov

NLMK Group, VIZ-Steel

Email: Puzanov_mp@nlmk.com
ORCID iD: 0009-0009-9457-4008
SPIN-code: 8585-5617

Ph.D. (Engineering)

Russian Federation, 620108, Russian Federation, Ekaterinburg, 28 Kirova st.

Aleksey A. Chernov

M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch)

Email: chernov_aa@imp.uran.ru
ORCID iD: 0009-0006-3478-6277
SPIN-code: 8376-7792

Junior researcher

Russian Federation, 620108, Russian Federation, Ekaterinburg, 18 S. Kovalevskaya st

Yury S. Korobov

M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch)

Email: yukorobov@imp.uran.ru
ORCID iD: 0000-0003-0553-918X
SPIN-code: 7474-3093
Scopus Author ID: 14063208900
ResearcherId: Q-6633-2018

D.Sc. (Engineering), Associate Professor

Russian Federation, 620108, Russian Federation, Ekaterinburg, 18 S. Kovalevskaya st.

Larisa S. Karenina

NLMK Group, VIZ-Steel

Email: karenina_ls@nlmk.com
ORCID iD: 0009-0001-5439-2711
SPIN-code: 8746-2495

Ph.D. (Chemical)

Russian Federation, 620108, Russian Federation, Ekaterinburg, 28 Kirova st.

Yulia V. Khudorozhkova

Institute of Engineering Science, RAS (Ural Branch)

Email: khjv@mail.ru
ORCID iD: 0000-0003-3832-1419
SPIN-code: 5883-6066
Scopus Author ID: 8601281200
ResearcherId: O-9221-2015

Ph.D. (Engineering), Associate Professor

Russian Federation, 620049, Russian Federation, Ekaterinburg, 34 Komsomolskaya st.

Aleksey V. Makarov

M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch)

Email: avm@imp.uran.ru
ORCID iD: 0000-0002-2228-0643
SPIN-code: 3080-5032
Scopus Author ID: 57195590138
ResearcherId: D-5663-2016
https://www.imp.uran.ru/?q=ru/content/chlen-korrespondent-ran-makarov-aleksey-viktorovich

D.Sc. (Engineering)

Russian Federation, 620108, Russian Federation, Ekaterinburg, 18 S. Kovalevskaya st.

Denis I. Davydov

M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch)

Email: davidov@imp.uran.ru
ORCID iD: 0000-0003-1381-0929
SPIN-code: 1992-4459
Scopus Author ID: 36011496500
ResearcherId: J-5599-2013
https://www.imp.uran.ru/?q=ru/user_card&sotrudnik=1289

Ph.D. (Engineering)

Russian Federation, 620108, Russian Federation, Ekaterinburg, 18 S. Kovalevskaya st.

Galiya M. Kinzhebaeva

M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch)

Author for correspondence.
Email: galikinz@outlook.com
ORCID iD: 0009-0004-1243-6765
SPIN-code: 6093-7977

Laboratory assistant; 1. M. N. Mikheev Institute of Metal Physics, RAS (Ural Branch), 18 S. Kovalevskaya st., Ekaterinburg, 620108, Russian Federation; galikinz@outlook.com

Russian Federation, 620108, Russian Federation, Ekaterinburg, 18 S. Kovalevskaya st.

References

  1. Миндлин Б.И., Настич В.П., Чеглов А.Э. Изотропная электротехническая сталь – М.: Интермет Инжиниринг, 2006. – 240 с. – ISBN 5-89594-130-3.
  2. Scaling behaviour of Si-alloyed steel slabs under reheating conditions / G. Mikl, T. Höfler, C. Gierl-Mayer, H. Danninger, B. Linder, G. Angeli // Journal of Casting & Materials Engineering. – 2021. – Vol. 5 (4). – P. 71–74. – doi: 10.7494/jcme.2021.5.4.71.
  3. Grabke H.J., Leroy V., Viefhaus H. Segregation on the surface of steels in heat treatment and oxidation // ISIJ International. – 1995. – Vol. 35 (2). – P. 95–113. – doi: 10.2355/isijinternational.35.95.
  4. Kuklik V., Kudlacek J. Hot-dip galvanizing of steel structures. – Oxford: Butterworth-Heinemann, 2016. – 234 p. – ISBN 978-0-08-100753-2. – doi: 10.1016/C2014-0-03512-5.
  5. Fukubayashi H.H., Brennan M.S. Present furnace and pot roll coatings and future development // ITSC 2004 – Conference Proceedings, Osaka, Japan, May 2004. – ASM, 2004. – P. 125–131. – doi: 10.31399/asm.cp.itsc2004p0125.
  6. Huang T.S. Effect of Mn on the formation of oxide buildups upon HVOF-sprayed MCrAlY-ceramic-type cermet coatings // Journal of Thermal Spray Technology. – 2011. – Vol. 20 (3). – P. 447–455. – doi: 10.1007/s11666-010-9531-y.
  7. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel / Y. Kim, J. Lee, K.-S. Shin, S.-H. Jeon, K.-G. Chin // Materials Characterization. – 2014. – Vol. 89. – P. 138–145. – doi: 10.1016/j.matchar.2014.01.012.
  8. Деверо О.Ф. Проблемы металлургической термодинамики: пер. с англ. – М.: Металлургия, 1986. – 424 с.
  9. Selective oxidation of ternary Fe-Mn-Si alloys during annealing process / X. Zhang, C. Corrêa da Silva, C. Liu, M. Prabhakar, M. Rohwerder // Corrosion Science. – 2020. – Vol. 174. – P. 108859. – doi: 10.1016/j.corsci.2020.108859.
  10. Zheng X., Kang Y., Zhou J. Influence of coating and dew point on hearth roll pickup // Journal of Iron and Steel Research International. – 2019. – Vol. 26 (6). – P. 647–652. – doi: 10.1007/s42243-019-00231-z.
  11. Changing oxide layer structures with respect to the dew point prior to hot-dip galvanizing of δ-TRIP steel / H. Wang, X. Jin, G. Hu, Y. He // Surface and Coatings Technology. – 2018. – Vol. 337. – P. 260–269. – doi: 10.1016/j.surfcoat.2017.12.046.
  12. Effect of dew point on the selective oxidation of advanced high strength steels / M. Maderthaner, A. Jarosik, G. Angeli, R. Haubner // Materials Science Forum. – 2017. – Vol. 891. – P. 292–297. – doi: 10.4028/ href='www.scientific.net/MSF.891.292' target='_blank'>www.scientific.net/MSF.891.292.
  13. Cause analysis on buildup formation of carbon sleeve in continuous annealing furnace for non-oriented silicon steel produced by CSP process / M. He, S. Peng, G. Xue, Y. Ouyang, J. Zhang, H. Chen, B. Liu // Characterization of Minerals, Metals, and Materials 2015. – Cham: Springer International Publishing, 2016. – P. 587–593. – doi: 10.1007/978-3-319-48191-3_73.
  14. Applications and developments of thermal spray coatings for the Iron and Steel Industry / S. Singh, C.C. Berndt, R.K. Singh Raman, H. Singh, A.S.M. Ang // Materials. – 2023. – Vol. 16 (2). – P. 516. – doi: 10.3390/ma16020516.
  15. Сухов А.И., Коротченкова А.В. Особенности производства электротехнических изотропных сталей с особо низкими удельными магнитными потерями // Современные материалы, техника и технологии. – 2019. – № 5 (26). – С. 172–180.
  16. Midorikawa S., Yamada T., Nakazato K. Development of surface-modifying technologies by thermal spraying of process rolls in steel production process // Kawasaki Steel Technical Report. – 2001. – N 45. – P. 57–63. – URL: https://www.jfe-steel.co.jp/archives/en/ksc_giho/no.45/tobira057.html (accessed: 20.11.2025).
  17. Effect of microstructure on resistance to buildups formation of carbon sleeves in continuous annealing furnace for silicon steel production / M. He, X. Wang, W. Zhou, X. Gong, J. Zhang, J. Xu // Characterization of Minerals, Metals, and Materials. – Springer, 2019. – P. 351–359. – (Minerals, Metals and Materials Series). – doi: 10.1007/978-3-030-05749-7_35.
  18. Turkdogan E.T. Fundamentals of steelmaking. – Maney Publishing, 2010. – 345 p. – ISBN 1906540977.
  19. Superalloys II: High-temperature materials for aerospace and industrial power / ed. by C.T. Sims, N.S. Stoloff, W.C. Hagel. – New York: Willey, 1987. – 640 p. – ISBN 0471011479.
  20. Гольдштейн М.И., Грачев С.В., Векслер Ю.Г. Специальные стали: учебник для студентов вузов. – М.: Металлургия, 1985. – 408 с.
  21. Dorfman M.R., Sporer D., Meyer P. Thermal spray technology growth in gas turbine applications // ASM Handbook. Vol. 5A. Thermal Spray Technology. – ASM International, 2013. – P. 280–286. – doi: 10.31399/asm.hb.v05a.a0005737.
  22. Matthews S., James B. Review of thermal spray coating applications in the steel industry: Part 1 – Hardware in steel making to the continuous annealing process // Journal of Thermal Spray Technology. – 2010. – Vol. 19 (6). – P. 1267–1276. – doi: 10.1007/s11666-010-9518-8.
  23. Современное применение металлокерамических покрытий на основе систем металл-хром-алюминий-иттрий (м-кролей) / Ф.И. Пантелеенко, В.А. Оковитый, О.Г. Девойно, А.С. Володько, В.А. Сидоров, В.В. Оковитый, В.М. Асташинский // Прогрессивные технологии и системы машиностроения. – 2021. – № 3 (74). – С. 72–81.
  24. Влияние Y2O3 на стойкость NiCrAlY плазменных покрытий против образования наростов на печных роликах / А.А. Чернов, К.А. Берсенев, М.П. Пузанов, Ю.С. Коробов, Л.С. Каренина, Ю.В. Худорожкова, А.В. Макаров, Д.И. Давыдов // Сталь. – 2025. – № 5. – С. 24–30.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

Funding

The research was carried out using the equipment of the equipment of the Plastometriya shared research facilities at the Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences. The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Structure” No. 122021000033-2), and the state assignment of the Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences (theme No. 124020600045-0).

 

Acknowledgements

The authors express their gratitude to S.P. Kochugov, NPP TSP LLC, for preparing the specimens.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».