Study of abrasive wear resistance of flux-cored wires during surfacing on high-manganese Hadfield steel

Cover Page

Cite item

Abstract

Introduction. Austenitic high-manganese steel is commonly used in various railway and mining components, such as crusher plates, where high impact and abrasive resistance and sliding wear resistance are required, as it exhibits a unique combination of high toughness and high work-hardening ability. Therefore, it is important to understand the behavior of wear-resistant materials such as austenitic high-manganese steel under impact and sliding wear. However, this steel has a limitation: it develops its high work-hardening ability only under high impact loads and high-stress conditions. Alternatively, various hardening methods, surfacing, or replacement with low-carbon, high-alloy steels and high-chromium cast irons are used. The purpose of this study is to evaluate the abrasive wear resistance of flux-cored wires during surfacing on high-manganese Hadfield steel. Methods and materials. This study examines surfacing wires whose main alloying elements are chromium, vanadium, and tungsten. The chemical composition of the surfaced samples was determined using a BRUKER S1 TITAN portable X-ray fluorescence analyzer for metals and alloys. A Duramin-40 AC3 hardness tester (STRUERS APS, Ballerup, Denmark) was used to measure Rockwell hardness. 1.1% C-13% Mn steel demonstrated an initial bulk hardness of HRc = 23 ± 3. Specimens for microstructural study were selected from cast and surfaced samples. The microstructures were examined by optical microscopy after etching in 2.5% nitric acid solutions, rinsing in methanol, and immersion in 15% HCl solution. Impact abrasive wear tests were conducted on a DUCOM (TR-56-M3) impact abrasive wear testing machine (made in India). Results and discussion. An analysis of a cross-section of a 1.1% C-13% Mn steel specimen after abrasive wear testing revealed crack propagation beneath the surface of the part, with no visible connection to the surface, indicating that cracks initiated both at and below the surface. The microstructure of the surfaced layers, rich in finely dispersed boron carbides dispersed in the martensitic matrix, combined with a lamellar molybdenum boride phase, suggests that the material surfaced on Hadfield steel may possess higher hardness and wear resistance than the base material. Industrial tests of surfaced beaters revealed that the dominant wear mechanisms are micro-cutting, pitting, and micro-fracture (chipping and micro-indentation). Based on the results of the studies of surfacing materials, it can be concluded that wires with chromium content in the range of 3–6% have the characteristics for applications requiring high abrasive wear resistance in the mining industry.

About the authors

Yulia I. Karlina

National Research Moscow State University of Civil Engineering

Email: jul.karlina@gmail.com
ORCID iD: 0000-0001-6519-561X
SPIN-code: 3455-0836
Scopus Author ID: 57210311769
ResearcherId: AAP-4915-2021

Ph.D. (Engineering)

Russian Federation, 129337, Russian Federation, Moscow, 26 Yaroslavskoe Shosse

Vladimir Yu. Konyukhov

Irkutsk National Research Technical University; Cherepovets State University

Email: konyukhov_vyu@mail.ru
ORCID iD: 0000-0001-9137-9404
SPIN-code: 3445-3288
Scopus Author ID: 56769690400
ResearcherId: JTT-2083-2023

Ph.D. (Engineering), Professor

Russian Federation, 664074, Russian Federation, Irkutsk, 83 Lermontova str.; 162600, Russian Federation, Cherepovets, 5 Lunacharsky pr.

Tatiana A. Oparina

Irkutsk National Research Technical University

Author for correspondence.
Email: martusina2@yandex.ru
ORCID iD: 0000-0002-9062-6554
SPIN-code: 5697-2740
Scopus Author ID: 57222118655
ResearcherId: KKT-9622-2024

Assistant

Russian Federation, 664074, Russian Federation, Irkutsk, 83 Lermontova str.

References

  1. Tweedale G., Paton W.D.M. Sir Robert Abbott Hadfield F.R.S (1858–1940) and the discovery of manganese steel // Notes and Records of the Royal Society of London. – 1985. – Vol. 40 (1). – P. 63–74.
  2. Gauzzi F., Rossi M., Verdini B. Cold-working induced martensitic transformation in 12 percent Mn austenitic steel (Hadfield steel) // Metallurgia Italiana. – 1971. – Vol. 63 (11). – P. 555.
  3. Dastur Y.N., Leslie W.C. Mechanism of work hardening in Hadfield manganese steel // Metallurgical transactions A. – 1981. – Vol. 12 (5). – P. 749–759. – doi: 10.1007/BF02648339.
  4. Bhattacharyya S. A friction and wear study of Hadfield manganese steel // Wear. – 1966. – Vol. 9 (6). – P. 451–461. – doi: 10.1016/0043-1648(66)90136-0.
  5. The deformation, strain hardening, and wear behavior of chromium-alloyed Hadfield steel in abrasive and impact conditions / M. Lindroos, M. Apostol, V. Heino, K. Valtonen, A. Laukkanen, K. Holmberg, V.T. Kuokkala // Tribology Letters. – 2015. – Vol. 57 (3). – P. 24. – doi: 10.1007/s11249-015-0477-6.
  6. Тен Э.Б., Базлова Т.А., Лихолобов Е.Ю. Влияние внепечной обработки на структуру и механические свойства стали 110Г13Л // Металловедение и термическая обработка металлов. – 2015. – № 3. – С. 26–28.
  7. Болобов В.И., Бочков В.С., Цинянь С. Износостойкость стали Гадфильда при больших удельных нагрузках // Горное оборудование и электромеханика. – 2012. – № 10. – С. 12–14.
  8. Исследование механизмов абразивного и ударно-абразивного изнашивания высокомарганцевой стали / В.М. Колокольцев, К.Н. Вдовин, В.П. Чернов, Н.А. Феоктистов, Д.А. Горленко, В.К. Дубровин // Вестник МГТУ им. Г.И. Носова. – 2017. – № 2. – C. 54–62. – doi: 10.18503/1995-2732-2017-15-2-54-62.
  9. Разработка износостойких деталей из высокомарганцевой модифицированной стали 110Г13Л / Ш.М. Чоршанбиев, К.А. Каримов, Ш.Р. Адилова, Н.Д. Тураходжаев, A. Еркинджонов, М.М. Мирмухамедов, Дж.Х. Шарипов, З.Р. Обидов, Х. Комолов // Журнал Сибирского федерального университета. Техника и технологии. – 2024. – Т. 17 (2). – С. 175–185. – На англ. яз. – EDN ITXLPA.
  10. Болобов В.И., Чупин С.А. Влияние вида упрочняющей обработки на износостойкость материалов горного оборудования // Записки Горного института. – 2015. – Т. 216. – С. 44–48.
  11. Износостойкость стали 110Г13Л в различных абразивных средах / В.И. Болобов, А.П. Баталов, В.С. Бочков, С.А. Чупин // Записки Горного института. – 2014. – Т. 209. – С. 17–22.
  12. Comparative metallographic analysis of the structure of St3 steel after being exposed to different ways of work-hardening / A.E. Balanovsky, M.G. Shtayger, M.V. Grechneva, V.V. Kondrat'ev, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012012. – doi: 10.1088/1757-899X/411/1/012012.
  13. Features of investigation of steels with a metastable austenitic structure / V.G. Teplukhin, A.I. Popov, V.N. Kudryavtsev, D.S. Fomin, M.M. Radkevich // Advances in Mechanical Engineering: Selected contributions from the conference “Modern engineering: Science and education”, Saint Petersburg, Russia, June 2022. – Cham: Springer Nature Switzerland, 2023. – P. 164–171. – doi: 10.1007/978-3-031-30027-1_18.
  14. Formation of a dissipative structure of metastable austenite for raising the wear resistance of carbon steels / M.A. Filippov, V.P. Shveikin, V.A. Sharapova, S.M. Nikiforova, M.S. Khadyev // Metal Science and Heat Treatment. – 2023. – Vol. 64 (9). – P. 509–515. – doi: 10.1007/s11041-023-00854-w.
  15. Surface wear in Hadfield steel castings DOPED with nitrided vanadium / K. Vdovin, A. Pesin, N. Feoktistov, D. Gorlenko // Metals. – 2018. – Vol. 8 (10). – P. 845. – doi: 10.3390/met8100845.
  16. Description of the complex of technical means of an automated control system for the technological process of thermal vortex enrichment / V.V. Kondrat'ev, V.O. Gorovoy, A.D. Kolosov, R.V. Kononenko, V.Y. Konyukhov // Journal of Physics Conference Series. – 2020. – Vol. 1661 (1). – P. 012101. – doi: 10.1088/1742-6596/1661/1/012101.
  17. Operational factors of new flux cored wires of the Fe–C–Si–Mn–Cr–Ni–Mo system for surfacing of protective plates of shearer cutting drums / N. Kozyrev, A. Usoltsev, R. Kryukov, A. Gusev, I. Osetkovskiy // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 377. – P. 012022. – doi: 10.1088/1755-1315/377/1/012022.
  18. Эксплуатационные показатели новых порошковых проволок системы Fe-C-Si-Мn-Сr-Ni-Mo / Н.А. Козырев, А.А. Усольцев, Р.Е. Крюков, А.И. Гусев, И.В. Осетковский // Черная металлургия. Бюллетень научно-технической и экономической информации. – 2019. – Т. 75, № 7. – С. 860–869. – EDN HQDATQ.
  19. Наплавка порошковыми проволоками систем C–Si–Mn–Мо–V–В и C–Si–Mn–Cr–Mo–V деталей горнорудного оборудования / А.И. Гусев, Н.В. Кибко, М.В. Попова, Н.А. Козырев, И.В. Осетковский // Известия высших учебных заведений. Черная Металлургия. – 2017. – Т. 60, № 4. – С. 318–323. – doi: 10.17073/0368-0797-2017-4-318-323.
  20. Шляхова Г.В., Данилов В.И. Исследование влияния электродуговой наплавки на структуру и свойства покрытий // Известия высших учебных заведений. Черная Металлургия. – 2024. – Т. 67, № 4. – С. 433–439. – doi: 10.17073/0368-0797-2024-4-433-439.
  21. Metlitskii V.A. Flux-cored wires for arc welding and surfa­cing of cast iron // Welding International. – 2008. – Vol. 22 (11). – P. 796–800. – doi: 10.1080/09507110802593646.
  22. Pulsed TIG cladding of a highly carbon-, chromium-, molybdenum-, niobium-, tungsten- and vanadium-alloyed flux-cored wire electrode on duplex stainless steel X2CrNiMoN 22-5-3 / D. Muta?cu, O. Karancsi, I. Mitelea, C.M. Craciunescu, D. Buzdugan, I.D. U?u // Materials. – 2023. – Vol. 16 (13). – P. 4557. – doi: 10.3390/ma16134557.
  23. Exploring the trends in flux-cored arc welding: scientometric analysis approach / A. Swierczynska, B. Varbai, C. Pandey, D. Fydrych // The International Journal of Advanced Manufacturing Technology. – 2024. – Vol. 130 (1). – P. 87–110. – doi: 10.1007/s00170-023-12682-6.
  24. Golyakevich A.A., Orlov L.N., Maksimov S.Yu. Peculiarities of welding process using metal cored wire of TMV5-MK grade // The Paton Welding Journal. – 2019. – Vol. 6. – P. 50–53. – doi: 10.15407/tpwj2019.06.10.
  25. Sabzi M., Obeydavi A., Mousavi Anijdan S.H. The effect of joint shape geometry on the microstructural evolution, fracture toughness, and corrosion behavior of the welded joints of a Hadfield steel // Mechanics of Advanced Materials and Structures. – 2019. – Vol. 26 (12). – P. 1053–1063. – doi: 10.1080/15376494.2018.1430268.
  26. Eremin E.N., Losev A.S. A flux-core wire for hardfacing sealing surfaces of stop valves // Welding International. – 2016. – Vol. 30 (3). – P. 216–219. – doi: 10.1080/09507116.2015.1044268.
  27. Kanishka K., Acherjee B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration // Journal of Manufacturing Processes. – 2023. – Vol. 89. – P. 220–283. – doi: 10.1016/j.jmapro.2023.01.034.
  28. Lee C.M., Woo W.S., Roh Y.H. Remanufacturing: Trends and issues // International Journal of Precision Engineering and Manufacturing-Green Technology. – 2017. – Vol. 4 (1). – P. 113–125. – doi: 10.1007/s40684-017-0015-0.
  29. Application of plasma surface quenching to reduce rail side wear / M.V. Konstantinova, A.E. Balanovskiy, V.E. Gozbenko, S.K. Kargapoltsev, A.I. Karlina, M.G. Shtayger, E.A. Guseva, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012146. – doi: 10.1088/1757-899X/560/1/012146.
  30. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Y. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13 (6). – P. 1043. – doi: 10.3390/met13061043.
  31. Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off / M.G. Shtayger, A.E. Balanovskiy, S.K. Kargapoltsev, V.E. Gozbenko, A.I. Karlina, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012190. – doi: 10.1088/1757-899X/560/1/012190.
  32. Surface hardening of structural steel by cathode spot of welding arc / A.E. Balanovskiy, M.G. Shtayger, A.I. Karlina, S.K. Kargapoltsev, V.E. Gozbenko, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012138. – doi: 10.1088/1757-899X/560/1/012138.
  33. Hybrid processing: the impact of mechanical and surface thermal treatment integration onto the machine parts quality / V.Yu. Skeeba, V.V. Ivancivsky, A.V. Kutyshkin, K.A. Parts // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 126 (1). – P. 012016. – doi: 10.1088/1757-899x/126/1/012016.
  34. Research on the possibility of lowering the manufacturing accuracy of cycloid transmission wheels with intermediate rolling elements and a free cage / E.A. Efremenkov, N.V. Martyushev, V.Yu. Skeeba, M.V. Grechneva, A.V. Olisov, A.D. Ens // Applied Sciences. – 2022. – Vol. 12 (1). – P. 5. – doi: 10.3390/app12010005.
  35. Martyushev N.V., Skeeba V.Yu. The method of quantitative automatic metallographic analysis // Journal of Physics: Conference Series. – 2017. – Vol. 803 (1). – P. 012094. – doi: 10.1088/1742-6596/803/1/012094.
  36. Skeeba V.Yu., Ivancivsky V.V. Reliability of quality forecast for hybrid metal-working machinery // IOP Conference Series: Earth and Environmental Science. – 2018. – Vol. 194 (2). – P. 022037. – doi: 10.1088/1755-1315/194/2/022037.
  37. Defining efficient modes range for plasma spraying coatings / E.A. Zverev, V.Yu. Skeeba, P.Yu. Skeeba, I.V. Khlebova // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 87 (8). – P. 082061. – doi: 10.1088/1755-1315/87/8/082061.
  38. Influence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions / R.A. Mamadaliev, P.V. Bakhmatov, N.V. Martyushev, V.Yu. Skeeba, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1255–1264. – doi: 10.1007/s11015-022-01271-9.
  39. Plasma-arc surface modification of metals in a liquid medium / A.E. Balanovsky, M.G. Shtayger, V.V. Kondrat'ev, V. Van Huy, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012013. – doi: 10.1088/1757-899X/411/1/012013.
  40. Karlina A.I., Karlina Y.I., Gladkikh V.A. Studying the microstructure, phase composition, and wear resistance of alloyed layers after laser surface melting of low-carbon steel 20 // Metallurgist. – 2024. – Vol. 68 (5). – P. 757–766. – doi: 10.1007/s11015-024-01782-7.
  41. Study of wear of an alloyed layer with chromium carbide particles after plasma melting / A.I. Karlina, Y.I. Karlina, V.V. Kondratiev, R.V. Kononenko, A.D. Breki // Crystals. – 2023. – Vol. 13 (12). – P. 1696. – doi: 10.3390/cryst13121696.
  42. Complex metallographic researches of 110G13L steel after heat treatment / A.E. Balanovsky, M.G. Shtayger, V.V. Kondrat'ev, S.A. Nebogin, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012014. – doi: 10.1088/1757-899X/411/1/012014.
  43. An investigation into the behavior of cathode and anode spots in a welding discharge / A.I. Karlina, A.E. Balanovskiy, V.V. Kondratiev, V.V. Romanova, A.G. Batukhtin, Y.I. Karlina // Applied Sciences Switzerland. – 2024. – Vol. 14 (21). – P. 9774. – doi: 10.3390/app14219774.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».