The influence of structural state on the mechanical and tribological properties of Cu-Al-Si-Mn bronze

Cover Page

Cite item

Abstract

Introduction. Electron beam additive manufacturing (EBAM) is a promising method for producing new alloys with unique properties. At the same time, existing problems with obtaining a high-quality structure require a search for a technical solution that ensures grain refinement and the formation of a more homogeneous microstructure. For strain-hardened copper alloys, severe plastic deformation (SPD) methods are effective ways to control their structural state and mechanical properties. Currently, the effect of severe plastic deformation on the structure, mechanical, and tribological properties of Cu-Al-Si-Mn bronze, which is promising for industrial application, has not been studied. The aim of this work is to study the relationship between the structural state formed as a result of severe plastic deformation and the mechanical and tribological properties of Cu-Al-Si-Mn bronze samples. The paper studies samples of Cu-Al-Si-Mn bronze, made from bronze (3% Si-1% Mn) wires and commercially pure aluminum using multiwire electron beam additive manufacturing. For targeted changes in structure and properties, the resulting additively manufactured blanks were subjected to severe plastic deformation. Multi-axial forging and rolling were used as SPD methods, aimed at significant grain refinement and increased strength characteristics. The work uses such research methods as transmission electron microscopy (TEM) for a detailed analysis of the submicron structure after SPD, X-ray diffraction (XRD) to identify the phase composition of the alloy, tensile tests to determine key mechanical properties such as tensile strength, yield strength, and percentage of elongation, microhardness measurements to assess the hardening of samples using Vickers loads, confocal laser scanning microscopy (CLSM) for three-dimensional analysis of the surface topography and studying the morphology of worn surfaces, and dry sliding friction tests to assess the wear resistance of the material and the friction coefficient in the absence of lubrication under specified loads and sliding speeds. Results and discussion. Based on the data of transmission electron microscopy, it was found that the use of multi-axial forging and rolling led to significant changes in the structure of the material, as well as its phase composition. Based on the X-ray diffraction analysis, it was revealed that severe plastic deformation contributed to the deformation-induced dissolution of the γ- and β-phases. The results of tensile tests showed that the highest strength is achieved after intense plastic deformation by rolling, after multi-axial forging. SPD by multi-axial forging and subsequent rolling led to an increase in the microhardness of bronze. The results of tribological tests showed that SPD contributes to a decrease in the friction coefficient (FC) compared to the material in the printed state. Heat treatment of samples after SPD led to an increase in FC and an increase in fluctuations in its value. SPD by multi-axial forging and subsequent rolling contributes to a significant increase in the wear resistance of samples under dry sliding friction conditions. Low-temperature annealing after SPD leads to a decrease in the wear resistance of deformed samples. Thus, the use of SPD makes it possible to increase the strength and wear resistance of bronze samples of the Cu-Al-Si-Mn system.

About the authors

Andrey V. Filippov

Institute of Strenght Physics and Materials Sciences SB RAS

Author for correspondence.
Email: avf@ispms.ru
ORCID iD: 0000-0003-0487-8382
SPIN-code: 1794-6373
Scopus Author ID: 24587007100
ResearcherId: A-9831-2015

Ph.D. (Engineering), Scientific associate

Russian Federation, 2/4 per. Academicheskii, Tomsk, 634055, Russian Federation

Nikolay N. Shamarin

Institute of Strenght Physics and Materials Sciences SB RAS

Email: shnn@ispms.ru
ORCID iD: 0000-0002-4649-6465
SPIN-code: 9275-1472
Scopus Author ID: 57191272444
ResearcherId: U-7601-2018
https://www.researchgate.net/profile/Nikolay-Shamarin

Junior researcher

Russian Federation, 2/4 per. Academicheskii, Tomsk, 634055, Russian Federation

Sergei Yu. Tarasov

Institute of Strenght Physics and Materials Sciences SB RAS

Email: tsy@ispms.ru
ORCID iD: 0000-0003-0702-7639
SPIN-code: 1740-3089
Scopus Author ID: 7005125937
ResearcherId: B-6202-2008
https://www.researchgate.net/profile/Sergei-Tarasov-2

D.Sc. (Engineering), Chief Researcher

Russian Federation, 2/4 per. Academicheskii, Tomsk, 634055, Russian Federation

Natalya V. Semenchyuk

Institute of Strenght Physics and Materials Sciences SB RAS

Email: natali.t.v@ispms.ru
ORCID iD: 0000-0001-6547-7676
SPIN-code: 1879-6785
Scopus Author ID: 57212032684

Junior researcher

Russian Federation, 2/4 per. Academicheskii, Tomsk, 634055, Russian Federation

References

  1. Медь и медные сплавы: отечественные и зарубежные марки: справочник / О.Е. Осинцев, В.Н. Федоров. – 2-е изд., перераб. и доп. – М.: Инновационное машиностроение, 2016. – 360 с. – ISBN 978-5-9907638-3-8.
  2. Micro-, Meso- and macrostructural design of bulk metallic and polymetallic materials by wire-feed electron-beam additive manufacturing / E.A. Kolubaev, V.E. Rubtsov, A.V. Chumaevsky, E.G. Astafurova // Physical Mesomechanics. – 2022. – Vol. 25 (6). – P. 479–491. – doi: 10.1134/S1029959922060017.
  3. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing / S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang // Acta Materialia. – 2009. – Vol. 57 (5). – P. 1586–1601. – doi: 10.1016/j.actamat.2008.12.002.
  4. Massalski T.B. The Al-Cu (Aluminum-Copper) system // Bulletin of Alloy Phase Diagrams. – 1980. – Vol. 1. – P. 27–33. – doi: 10.1007/BF02883281.
  5. Kroupa A., Zobac O., Richter K.W. The thermodynamic reassessment of the binary Al-Cu system // Journal of Materials Science. – 2021. – Vol. 56. – P. 3430–3443. – doi: 10.1007/s10853-020-05423-7.
  6. Experimental description of the Al-Cu binary phase diagram / O. Zobac, A. Kroupa, A. Zemanova, K.W. Richter // Metallurgical and Materials Transactions A. – 2019. – Vol. 50. – P. 3805–3815. – doi: 10.1007/s11661-019-05286-x.
  7. Alés A. Study of different structures derives of β−Cu3Al by means of ab-initio calculations and quasi-harmonic approximation // Computational Condensed Matter. – 2022. – Vol. 31. – P. e00652. – doi: 10.1016/j.cocom.2022.e00652.
  8. Calorimetric measurements and assessment of the binary Cu-Si and ternary Al-Cu-Si phase diagrams / B. Hallstedt B., J. Gröbner, M. Hampl, R. Schmid-Fetzer // Calphad. – 2016. – Vol. 53. – P. 25–38. – doi: 10.1016/j.calphad.2016.03.002.
  9. Experimental investigation of the Cu-Si phase diagram at x(Cu)>0.72 / K. Sufryd, N. Ponweiser, P. Riani, K.W. Richter, G. Cacciamani // Intermetallics. – 2011. – Vol. 19 (10). – P. 1479–1488. – doi: 10.1016/j.intermet.2011.05.017.
  10. Phillips H.W.L. The constitution of aluminum-copper-silicon alloys // Journal of the Institute of Metals. – 1953. – Vol. 82. – P. 9–15.
  11. Raghavan V. Al-Cu-Si (Aluminum-Copper-Silicon) // Journal of Phase Equilibria and Diffusion. – 2007. – Vol. 28. – P. 180–182. – doi: 10.1007/s11669-007-9024-y.
  12. Experimental investigation and thermodynamic modeling of the Al-Cu-Si system / C.-Y. He, Y. Du, H.-L. Chen, H. Xu // Calphad. – 2009. – Vol. 33. – P. 200–210. – doi: 10.1016/j.calphad.2008.07.015.
  13. Riani P., Sufryd K., Cacciamani G. About the Al-Cu-Si isothermal section at 500 °C and the stability of the ?-Cu15Si4 phase // Intermetallics. – 2009. – Vol. 17. – P. 154–164. – doi: 10.1016/j.intermet.2008.10.011.
  14. Miettinen J. Thermodynamic description of the Cu-Al-Si system in the copper-rich corner // Calphad. – 2007. – Vol. 31. – P. 449–456. – doi: 10.1016/j.calphad.2007.05.001.
  15. Ponweiser N., Richter K.W. New investigation of phase equilibria in the system Al-Cu-Si // Journal of Alloys and Compounds. – 2012. – Vol. 512. – P. 252–263. – doi: 10.1016/j.jallcom.2011.09.076.
  16. Heat input effect on microstructure and mechanical properties of Electron Beam Additive Manufactured (EBAM) Cu-7.5wt.%Al Bronze / A. Filippov, N. Shamarin, E. Moskvichev, N. Savchenko, E. Kolubaev, E. Khoroshko, S. Tarasov // Materials. – 2021. – Vol. 14 (22). – P. 6948. – doi: 10.3390/ma14226948.
  17. The effect of heat input, annealing, and deformation treatment on structure and mechanical properties of Electron Beam Additive Manufactured (EBAM) silicon bronze / A. Filippov, N. Shamarin, E. Moskvichev, N. Savchenko, E. Kolubaev, E. Khoroshko, S. Tarasov // Materials. – 2022. – Vol. 15. – P. 3209. – doi: 10.3390/ma15093209.
  18. Decomposition of β′-martensite in annealing the additively manufactured aluminum bronze / A. Zykova, A. Panfilov, A. Chumaevskii, A. Vorontsov, D. Gurianov, N. Savchenko, E. Kolubaev, S. Tarasov // Materials Letters. – 2023. – Vol. 338. – P. 134064. – doi: 10.1016/j.matlet.2023.134064.
  19. Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments / D.V. Shangina, J. Gubicza, E. Dodony, N.R. Bochvar, P.B. Straumal, N.Yu. Tabachkova, S.V. Dobatkin // Journal of Materials Science. – 2014. – Vol. 49. – P. 6674–6681. – doi: 10.1007/s10853-014-8339-4.
  20. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation // Progress in Materials Science. – 2000. – Vol. 45. – P. 103–189. – doi: 10.1016/S0079-6425(99)00007-9.
  21. Исследование свойств сплавов на основе кремниевой бронзы, напечатанных с применением технологии электронно-лучевого аддитивного производства / А.В. Филиппов, Е.С. Хорошко, Н.Н. Шамарин, Е.А. Колубаев, С.Ю. Тарасов // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 1. – С. 110–130. – doi: 10.17212/1994-6309-2023-25.1-110-130.
  22. Mechanisms of formation of Al4Cu9 during mechanical alloying: An experimental study / R. Besson, M.-N. Avettand-Fenoel, L. Thuinet, J. Kwon, A. Addad, P. Roussel, A. Legris // Acta Materialia. – 2015. – Vol. 87. – P. 216–224. – doi: 10.1016/j.actamat.2014.12.050.
  23. Unusual kinetics of strain-induced diffusional phase transformations in Cu-Cr-Zr alloy / S.N. Faizova, D.A. Aksenov, I.A. Faizov, K.S. Nazarov // Letters on Materials. – 2021. – Vol. 11 (2). – P. 218–222. – doi: 10.22226/2410-3535-2021-2-218-222.
  24. Особенности деформационного растворения и строения поверхностей разрушения сплавов системы Cu-Co / Т.П. Толмачев, В.П. Пилюгин, А.М. Пацелов, Т.М. Гапонцева, А.В. Плотников, Р.В. Чурбаев, А.В. Иноземцев // Diagnostics, Resource and Mechanics of Materials and Structures. – 2019. – № 6. – С. 48–57. – doi: 10.17804/2410-9908.2019.6.048-057.
  25. Effect of annealing temperature on microstructure and properties of a heavy warm rolled nickel aluminum bronze alloy / S. Ma, X. Li, X. Yang, L. Fu, L. Liu, M. Xia, A. Shan // Metallurgical and Materials Transactions A. – 2023. – Vol. 54. – P. 293–311. – doi: 10.1007/s11661-022-06873-1.
  26. Naydenkin E.V., Grabovetskaya G.P. Deformation behavior and plastic strain localization of nanostructured materials produced by severe plastic deformation // Materials Science Forum. – 2009. – Vol. 633–634. – P. 107–119. – doi: 10.4028/ href='www.scientific.net/MSF.633-634.107' target='_blank'>www.scientific.net/MSF.633-634.107.
  27. Панин В.Е., Егорушкин В.Е., Панин А.В. Физическая мезомеханика деформируемого твердого тела как многоуровневой системы. 1. Физические основы многоуровневого подхода // Физическая мезомеханика. – 2006. – Т. 9, № 3. – С. 9–22.
  28. Грабовецкая Г.П., Мишин И.П., Колобов Ю.Р. Влияние дисперсного упрочнения на закономерности и механизмы ползучести меди с субмикрометровым размером зерен // Известия высших учебных заведений. Порошковая металлургия и функциональные покрытия. – 2009. – № 2. – С. 38–43.
  29. Козлов Э.В., Жданов А.Н., Конева Н.А. Барьерное торможение дислокаций. Проблема Холла-Петча // Физическая мезомеханика. – 2006. – Т. 9, № 3. – С. 81–92.
  30. Растворение частиц вторых фаз в низколегированном медном сплаве системы Cu-Cr-Zr при обработке методом равноканального углового прессования / И.А. Фаизов, Р.Р. Мулюков, Д.А. Аксенов, С.Н. Фаизова, Н.В. Землякова, K. Cardoso, Y. Zeng // Письма о материалах. – 2018. – Т. 8, № 1. – С. 110–114. – doi: 10.22226/2410-3535-2018-1-110-114.
  31. Ilie F. Tribological behaviour of the steel/bronze friction pair (journal bearing type) functioning with selective mass transfer // International Journal of Heat and Mass Transfer. – 2018. – Vol. 124. – P. 655–662. – doi: 10.1016/j.ijheatmasstransfer.2018.03.107.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».