Surface Hardening of Commercially Pure Titanium by Non-vacuum Electron Beam Cladding of Powder Mixtures

Cover Page

Cite item

Full Text

Abstract

Introduction. Modern engineering copes with different tasks associated with the modification of the structure of the surface layers of metallic materials using high-temperature heating sources. Structural transformations that occur during this treatment make it possible to increase the strength, corrosion and tribological behavior of metals. Titanium and its alloys are widely used in modern industry, but its distribution is limited by a high coefficient of friction and low resistance to wear. An insufficient attention is payed to the problem of titanium and its alloys hardening with the use of high-temperature sources of heating. Analysis of the works related to high-speed heating of titanium-base alloys showed that the laser beam is most often used as a source of surface heating. The Ti-6Al-4V titanium alloy predominantly performs the function of the base material. The samples obtained by surfacing powder mixtures containing titanium diboride (TiB2) and boron carbide (B4C) possess high hardness and wear resistance. However, the thickness of the coatings formed this way does not exceed 1 mm. To produce modified layers of increased thickness it is rational to use the method of electron beam treatment of materials in air. The aim of the work is to study the possibility of cladding of a powder mixture containing boron carbide to modify surface layers of cp-titanium by the method of non-vacuum electron beam treatment. Materials and Methods. Cp-titanium is used as the base material. Plates of base material were treated with a highly concentrated electron beam discharged into air. Powder mixtures with different content of boron carbide powder (10, 20 and 30 wt. %) were used to form particles of the high-strength phase in the surface layers. Modified materials were analyzed by optical and scanning electron microscopy. Studies of abrasion resistance were carried out under friction conditions on fixed and loosely fixed abrasive particles. Results and discussion. The mechanical and tribotechnical characteristics of modified titanium layers are largely determined by structural transformations occurring in the surface layers of the material. The treatment of a titanium alloy with a high-concentration electron beam in air allows obtaining modified layers with a thickness of more than 1 mm. Cladding of a powder mixture containing boron carbide leads to the formation of high-strength particles in the surface-alloyed layers, which have a significant effect on the properties of the base material. Addition to the cladding mixture 10 wt. % of a boron carbide powder allows obtaining qualitative layers containing finely dispersed particles of titanium monoboride and titanium carbide. The volume fraction of the high-strength phase in these layers is ~ 20%. Increasing the concentration of boron carbide in the original powder mixture to 30 wt. % leads to the formation in the structure of modified layers of large primary crystals of titanium boride and titanium carbide of dendritic morphology. An increase in B4C concentration also leads to an increase in the volume fraction of the strengthening phase to 40-44%. A characteristic feature of these samples is the presence of conglomerates of fine particles in the lower coverage zone. The average microhardness of the hardened layers reaches 4 250-6 400 MPa. In the conditions of friction on fixed of abrasive particles, the maximum wear resistance exceeds 2.4 times the same index of the reference sample was recorded during the testing of the alloy obtained by cladding the mixture with 30 wt. % B4C. The same samples showed an eightfold increase in the wear resistance values when the abrasive particles were loosely attached to the material.

About the authors

O. G. Lenivtseva

Email: lenivtseva_olga@mail.ru
Ph.D. (Engineering), Novosibirsk State Technical University, lenivtseva_olga@mail.ru

A. O. Tokarev

Email: aot51@ngs.ru
D.Sc. (Engineering), Associate Professor, Siberian State University of Water Transport, aot51@ngs.ru

I. K. Chakin

Email: chak_in2003@bk.ru
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, chak_in2003@bk.ru

S. V. Burov

Email: burchitai@mail.ru
Ph.D. (Engineering), Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, burchitai@mail.ru

Y. V. Khudorozhkova

Email: khjv@mail.ru
Ph.D. (Engineering), Associate Professor, Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, khjv@mail.ru

References

  1. Microstructure and wear resistance of c-BN/Ni–Cr–Ti composites prepared by spark plasma sintering / Y. Wang, K. Lei, Y. Ruan, W. Dong // International Journal of Refractory Metals and Hard Materials. – 2016. – Vol. 54. – P. 98–103. – doi: 10.1016/j.ijrmhm.2015.07.010.
  2. Shigeta M., Watanabe T. Multicomponent co-condensation model of Ti-based boride/silicide nanoparticle growth in induction thermal plasmas // Thin Solid Films. – 2007. – Vol. 515, iss. 9. – P. 4217–4227. – doi: 10.1016/j.tsf.2006.02.042.
  3. Microstructure and tribological property of TiC-Mo composite coating prepared by vacuum plasma spraying / X. Guo, Y. Niu, L. Huang, H. Ji, X. Zheng // Journal of Thermal Spray Technology. – 2012. – Vol. 21, iss. 5. – P. 1083–1090. – doi: 10.1007/s11666-012-9797-3.
  4. Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb / Q. Wang, P.-Z. Zhang, D.-B. Wei, X.-H. Chen, R.-N. Wang, H.-Y. Wang, K.-T. Feng // Materials and Design. – 2012. – Vol. 52. – P. 265–273. – doi: 10.1016/j.matdes.2013.05.061.
  5. Formation of equiaxed alpha and titanium nitride precipitates in spark plasma sintered TiB/Ti–6Al–4V composites / P. Nandwana, J.Y. Hwang, M.Y. Koo, J. Tiley, S.H. Hong, R. Banerjee // Materials Letters. – 2012. – Vol. 83. – P. 202–205. – doi: 10.1016/j.matlet.2012.05.132.
  6. Патент 2427666 Российская Федерация. Способ упрочнения поверхности изделий из титановых сплавов / А.Е. Михеев, А.В. Гирн, С.С. Ивасев, Е.В. Вахтеев. – № 2009147581/02; заявл. 21.12.2009; опубл. 27.08.2011, Бюл. № 24. – 6 с.
  7. Патент 2464355 Российская Федерация. Cпособ упрочнения поверхности изделий из титановых сплавов / В.В. Углов, Н.Н. Черенда, В.И. Шиманский, Г.З. Подсобей, В.М. Асташинский. – № 2011115506/02; заявл. 19.04.2011; опубл. 20.10.2012, Бюл. № 29. – 11 с.
  8. Zhang H.X., Yu H.J., Chen C.Z. In-situ forming composite coating by laser cladding C/B4C // Materials and Manufacturing Processes. – 2015. – Vol. 30, iss. 6. – P. 743–747. – doi: 10.1080/10426914.2014.994772.
  9. Zhang Yo., Sun Ji., Vilar R. Characterization of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition // Journal of Materials Processing Technology. – 2011. – Vol. 211, iss. 4. – P. 597–601. – doi: 10.1016/j.jmatprotec.2010.11.009.
  10. Zeng X., Yamaguchi T., Nishio K. Characteristics of Ti (C,N)/TiB composite layer on Ti–6Al–4V alloy produced by laser surface melting // Optics and Laser Technology. – 2016. – Vol. 80. – P. 84–91. – doi: 10.1016/j.optlastec.2016.01.004.
  11. White R.M., Dickey E.C. Mechanical properties and deformation mechanisms of B4C–TiB2 eutectic composites // Journal of the European Ceramic Society. – 2013. – Vol. 34, iss. 9. – P. 2043–2050. – doi: 10.1016/j.jeurceramsoc.2013.08.012.
  12. Effect of yttrium on microstructure and mechanical properties of laser clad coatings reinforced by in situ synthesized TiB and TiC / J. Li, H. Wang, M. Li, Zh. Yu // Journal of Rare Earths. – 2011. – Vol. 29, iss. 5. – P. 477–483. – doi: 10.1016/S1002-0721(10)60483-8.
  13. Xin H., Watson L.M., Baker T.N. Surface analytical studies of a laser nitrided Ti-6Al-4V alloy: a comparison of spinning and stationary laser beam modes // Acta Materialia. – 1998. – Vol. 46, iss. 6. – P. 1949–1961. – doi: 10.1016/S1359-6454(97)00438-2.
  14. Pulsed laser deposited hard TiC, ZrC, HfC and TaC films on titanium: hardness and an energy-dispersive X-ray diffraction study / D. Ferro, J.V. Rau, V. Rossi Albertini, A. Generosi, R. Teghil, S.M. Barinov // Surface and Coatings Technology. – 2008. – Vol. 202, iss. 8. – P. 1455–1461. – doi: 10.1016/j.surfcoat.2007.06.060.
  15. Морфология боридов железа в поверхностном слое, наплавленном электронным лучом / И.А. Батаев, Н.В. Курлаев, О.А. Бутыленкова, О.Г. Ленивцева, А.А. Лосинская // Обработка металлов (технология, оборудование, инструменты). – 2012. – № 1 (54). – C. 85–89.
  16. Surface hardening of steels with carbon by non-vacuum electron-beam processing / I.A. Bataev, M.G. Golkovskii, A. Bataev, A. Losinskaya, R. Dostovalov, A. Popelyukh, E. Drobyaz // Surface and Coatings Technology. – 2014. – Vol. 242. – P. 164–169. – doi: 10.1016/j.surfcoat.2014.01.038.
  17. Батаев В.А., Буров В.Г., Дробяз Е.А. Особенности разрушения поверхностного слоя стали, перегретого электронным лучом // Известия высших учебных заведений. Черная металлургия. – 2006. – № 12 – С. 60–63.
  18. Euh K., Lee Jo., Lee S. Microstructural modification and property improvement of Boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron-beam irradiation // Metallurgical and Materials Transactions A. – 2001. – Vol. 32, iss. 10. – P. 2499–2508. – doi: 10.1007/s11661-001-0039-4.
  19. Lee Ch.S., Oh J.Ch., Lee S. Improvement of hardness and wear resistance of (TiC, TiB)/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron-beam irradiation // Metallurgical and Materials Transactions A. – 2003. – Vol. 34, iss. 7. – P. 1461–1471. – doi: 10.1007/s11661-003-0258-y.
  20. Microstructural modification and hardness improvement in boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron beam irradiation / K. Euh, J. Lee, S. Lee, Y. Koo, N.J. Kim // Scripta Materiallia. – 2001. – Vol. 45. – P. 1–6. – doi: 10.1016/S1359-6462(01)00981-2.
  21. Yun E., Lee K., Lee S. Improvement of high-temperature hardness of (TiC, TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation // Surface and Coatings Technology. – 2004. – Vol. 184, iss. 1. – P. 74–83. – doi: 10.1016/j.surfcoat.2003.10.017.
  22. Салимов Р.А. Мощные ускорители электронов для промышленного применения // Успехи физических наук. – 2000. – Т. 170, № 2. – C. 197–201. – doi: 10.3367/UFNr.0170.200002h.0197.
  23. Борискин В.Н., Татанов В.И. Контроль положения пучка электронов в атмосфере // Вопросы атомной науки и техники. Серия: Ядерно-физические исследования. – 2008. – № 3. – P. 75–77.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».