Investigation of complex surfaces of propellers of vehicles by a mechatronic profilograph

Cover Page

Cite item

Abstract

Introduction. The technology of investigation of screw propellers complex surfaces, which include the marine and aircraft propellers of vehicles, mechatronic profilers for the implementation of reverse engineering, is considered. A review of the scientific literature shows that at present the problem of monitoring complex surfaces of products at various stages of its life cycle requires further research, since the use of available devices and methods does not always provide the necessary accuracy, technological effectiveness and sufficient information on measurements. The purpose of the work is to develop a new technology for studying complex surfaces of propellers, which include marine and aircraft propellers of vehicles by means of a mechatronic profilograph to implement reverse engineering. Methods. The paper considers the implementation of the innovative technology for studying complex surfaces of propellers using the developed mechatronic profilograph. This ingenious mechatronic profilograph is designed to measure the profile and study the shape of complex surfaces of various products, as well as to determine the geometric and morphological parameters of these surfaces. On the basis of theoretical studies the main design and technological parameters are found and the hyperbolic dependence of the angular rate of the laser sensor movement on the scanning radius is determined for the developed mechatronic profilograph. For example, if a constant pitch of the trajectory along the Archimedes spiral is 2 mm, the value of the sensor angular rate should gradually decrease from the maximum value of 2 rad/s to the minimum value of 0.574 rad/s, i.e. by 3.484 times. Results and discussion. It is revealed that the use of cylindrical coordinates for processing the obtained data by a profilograph is logical and has a number of advantages. An express analysis of the propeller surfaces with rotary symmetry is carried out and differences in the shapes of the surfaces of the propeller blades by deviation values in the longitudinal and transverse directions for different radii are established. On the basis of the experimental data, a two-factor power model describing deviations with a determination coefficient of 0.967 is obtained, according to its analysis, it is clear that on average the angle of deviation in the perpendicular direction to the radius d - increases from 0 to 0.3°, and the angle of deviation along the radius g  increases from 0 to 5.4°.

About the authors

S. A. Vasilev

Email: Vsa_21@mail.ru
D.Sc. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospect, Cheboksary, 428015, Russian Federation, Vsa_21@mail.ru

V. V. Alekseev

Email: av77@list.ru
D.Sc. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospect, Cheboksary, 428015, Russian Federation, av77@list.ru

A. A. Fedorova

Email: e_a_a@mail.ru
I. N. Ulianov Chuvash State University, 15 Moskovsky Prospect, Cheboksary, 428015, Russian Federation, e_a_a@mail.ru

D. V. Lobanov

Email: lobanovdv@list.ru
D.Sc. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospect, Cheboksary, 428015, Russian Federation, lobanovdv@list.ru

References

  1. Feature-based reverse modeling strategies / Y. Ke, S. Fan, W. Zhu, A. Li, F. Liu, X. Shi // Computer-Aided Design. – 2006. – Vol. 38, iss. 5. – P. 485–506. – doi: 10.1016/j.cad.2005.12.002.
  2. Jeyapoovan T., Murugan M. Surface roughness classification using image processing // Measurement. – 2013. – Vol. 46 (7). – P. 2065–2072. – doi: 10.1016/j.measurement.2013.03.014.
  3. Lushnikov N., Lushnikov P. Methods of assessment of accuracy of road surface roughness measurement with profilometer // Transportation Research Procedia. – 2017. – Vol. 20. – P. 425–429. – doi: 10.1016/j.trpro.2017.01.069.
  4. Non-contact surface roughness measurement of crankshaft journals using a super-continuum laser / V.V. Alexander, H. Deng, M.N. Islam, F.L. Terry // Conference on Lasers and Electro-Optics 2010. – San Jose, CA, 2010. – P. AFA3. – doi: 10.1364/CLEO_APPS.2010.AFA3.
  5. Rao C.B., Raj B. Study of engineering surfaces using laser-scattering techniques // Sadhana. – 2003. – Vol. 28, pt. 3–4. – P. 739–761. – doi: 10.1007/BF02706457.
  6. Abidin F.Z., Hung J., Zahid M.N. Portable non-contact surface roughness measuring device // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 469. – P. 012074. – doi: 10.1088/1757-899X/469/1/012074.
  7. Kiran R., Amarendra H.J., Lingappa S. Vision system in quality control automation // MATEC Web of Conferences. – 2018. – Vol. 144. – P. 03008. – doi: 10.1051/matecconf/201814403008.
  8. Shih F.Y. Image processing and pattern recognition: fundamentals and techniques. – Piscataway, NJ: IEEE Press; Hoboken, NJ: Wiley, 2010. – 537 p. – ISBN 978-0-470-40461-4.
  9. Wang T., Groche P. Sheet metal profiles with variable height: numerical analyses on flexible roller beading // Journal of Manufacturing and Materials Processing. – 2019. – Vol. 3 (1). – P. 19. – doi: 10.3390/jmmp3010019.
  10. Stoudt M., Hubbard J.B. Analysis of deformation-induced surface morphologies in steel sheet // Acta Materialia. – 2005. – Vol. 53 (16). – P. 4293–4304. – doi: 10.1016/j.actamat.2005.05.038.
  11. Разработка и исследование профилографа для измерения отклонений формы поверхности изделий методом лазерного спиралевидного сканирования / С.А. Васильев, В.В. Алексеев, М.А. Васильев, А.А. Федорова // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 4. – С. 71–81. – doi: 10.17212/1994-6309-2020-22.4-71-81.
  12. Simulation of channel development on the surface of agrolandscapes on slopes / I.I. Maksimov, V.I. Maksimov, S.A. Vasil’;ev, V.V. Alekseev // Eurasian Soil Science. – 2016. – Vol. 49, iss. 4. – P. 475–480. – doi: 10.1134/S1064229316040074.
  13. Васильев С.А., Алексеев В.В., Речнов А.В. Экспресс-метод количественной оценки пожнивных остатков на поверхности почвы // Аграрный научный журнал. – 2015. – № 9. – С. 11–13.
  14. Hockauf R., Grove T., Denkena B. Prediction of ground surfaces by using the actual tool topography // Journal of Manufacturing and Materials Processing. – 2019. – Vol. 3 (2). – P. 40. – doi: 10.3390/jmmp3020040.
  15. Vasiliev S., Kirillov A., Afanasieva I. Method for controlling meliorative technologies on sloping cultivated lands using large scale profilometer // Engineering for Rural Development. Proceedings. – 2018. – Vol. 17. – P. 537–542.
  16. Васильев С.А. Разработка метода и профилографа для оценки мелиоративных технологий на склоновых агроландшафтах // Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. – 2016. – № 3. – С. 220–226.
  17. Васильев С.А. Обоснование конструктивно-технологических параметров профилографов для контроля мелиоративных технологий на склоновых агроландшафтах // Научный журнал Российского НИИ проблем мелиорации. – 2016. – № 4. – С. 40–54.
  18. Campana C., Moslehpour S. Non contact surface roughness measurement instrumentation // American Society for Engineering Education. – 2007. – AC 2007-2557. – P. 12.1107.
  19. Development and verification of a one-step-model for the design of flexible roll formed parts / P. Groche, A. Zettler, S. Berner, G. Schneider // International Journal of Material Forming. – 2010. – Vol. 4 (4). – doi: 10.1007/s12289-010-0998-3.
  20. Schilling R.J. Fundamentals of robotics: analysis and control. – New Delhi: Prentice Hall, 2005. – ISBN 81-203-1047-0.
  21. Yanyushkin A.S., Lobanov D.V., Arkhipov P.V. Research of influence of electric conditions of the combined electro-diamond machining on quality of grinding of hard alloys // IOP Conference Series: Materials Science and Engineering. – 2015. – Vol. 91. – P. 012051. – doi: 10.1088/1757-899X/91/1/012051.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».