The effect of the relative vibrations of the abrasive tool and the workpiece on the probability of material removing during finishing grinding
- Authors: Bratan S.M.1, Roshchupkin S.I.1, Chasovitina A.S.1, Gupta K.1
-
Affiliations:
- Issue: Vol 24, No 1 (2022)
- Pages: 33-47
- Section: EQUIPMENT. INSTRUMENTS
- URL: https://bakhtiniada.ru/1994-6309/article/view/301768
- DOI: https://doi.org/10.17212/1994-6309-2022-24.1-33-47
- ID: 301768
Cite item
Abstract
Introduction. Grinding remains the most efficient and effective method of final finishing that is indispensable in the production of high-precision parts. The characteristic features of grinding materials are that the removal of the material roughness of the workpiece surface occurs due to the stochastic interaction of the grains of the abrasive material with the surface of the workpiece, in the presence of mutual oscillatory movements of the abrasive tool and the workpiece being processed. During processing workpieces with abrasive tools, the material is removed by a large number of grains that do not have a regular geometry and are randomly located on the working surface. This makes it necessary to apply probability theory and the theory of random processes in mathematical simulation of operations. In real conditions, during grinding, the contact of the wheel with the workpiece is carried out with a periodically changing depth due to machine vibrations, tool shape deviations from roundness, unbalance of the wheel or insufficient rigidity of the workpiece. To eliminate the influence of vibrations in production, tools with soft ligaments are used, the value of longitudinal and transverse feeds is reduced, but all these measures lead to a decrease in the operation efficiency, which is extremely undesirable. To avoid cost losses, mathematical models are needed that adequately describe the process, taking into account the influence of vibrations on the output indicators of the grinding process. The purpose of the work is to create a theoretical and probabilistic model of material removing during finishing and fine grinding, which allows, taking into account the relative vibrations of the abrasive tool and the workpiece, to trace the patterns of its removal in the contact zone. The research methods are mathematical and physical simulation using the basic provisions of probability theory, the laws of distribution of random variables, as well as the theory of cutting and the theory of deformable solids. Results and discussion. The developed mathematical models allow tracing the effect on the removal of the material of the superimposition of single sections on each other during the final grinding of materials. The proposed dependencies show the regularity of the stock removal within the arc of contact of the grinding wheel with the workpiece. The considered features of the change in the probability of material removal when the treated surface comes into contact with an abrasive tool in the presence of vibrations, the proposed analytical dependences are valid for a wide range of grinding modes, wheel characteristics and a number of other technological factors. The expressions obtained allow finding the amount of material removal also for the schemes of end, profile, flat and round external and internal grinding, for which it is necessary to know the magnitude of relative vibrations. However, the parameters of the technological system do not remain constant, but change over time, for example, as a result of wear of the grinding wheel. To assess the state of the technological system, experimental studies are carried out taking into account the above changes over the period of durability of the grinding wheel.
About the authors
S. M. Bratan
Author for correspondence.
Email: serg.bratan@gmail.com
D.Sc. (Engineering), Professor; Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation; serg.bratan@gmail.com
S. I. Roshchupkin
Email: st.roshchupkin@yandex.ru
Ph.D. (Engineering), Associate Professor; Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation; st.roshchupkin@yandex.ru
A. S. Chasovitina
Email: nastya.chasovitina@mail.ru
Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation; nastya.chasovitina@mail.ru
K. Gupta
Email: kgupta@uj.ac.za
D.Sc. (Engineering), Professor; University of Johannesburg, 7225 John Orr Building Doornfontein Campus, Johannesburg, 2028, South Africa; kgupta@uj.ac.za
References
- Novoselov Y., Bogutsky V., Shron L. Patterns of removing material in workpiece – grinding wheel contact area // Procedia Engineering. – 2017. – Vol. 206. – P. 991–996. – doi: 10.1016/j.proeng.2017.10.583.
- Kassen G., Werner G. Kinematische Kenngrößen des Schleifvorganges // Industrie-Anzeiger. – 1969. – N 87. – P. 91–95.
- Malkin S., Guo C. Grinding technology: theory and applications of machining with abrasives. – New York: Industrial Press, 2008. – 372 р. – ISBN 978-0-8311-3247-7.
- Hou Z.B., Komanduri R. On the mechanics of the grinding process. Pt. 1. Stochastic nature of the grinding process // International Journal of Machine Tools and Manufacture. – 2003. – Vol. 43. – P. 1579–1593. – doi: 10.1016/S0890-6955(03)00186-X.
- Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation // MATEC Web of Conferences. – 2018. – Vol. 148. – P. 09004–09008. – doi: 10.1051/matecconf/20181480900.
- A time-domain surface grinding model for dynamic simulation / M. Leonesio, P. Parenti, A. Cassinari, G. Bianchi, M. Monn // Procedia CIRP. – 2012. – Vol. 4. – P. 166–171. – doi: 10.1016/j.procir.2012.10.030.
- Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process // Procedia Engineering. – 2016. – Vol. 150. – P. 400–405. – doi: 10.1016/j.proeng.2016.06.739.
- Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process // Journal of Sound and Vibration. – 2005. – Vol. 280. – P. 425–432. – doi: 10.1016/j.jsv.2003.12.006.
- Estimation of dynamic grinding wheel wear in plunge grinding / M. Ahrens, J. Damm, M. Dagen, B. Denkena, T. Ortmaier // Procedia CIRP. – 2017. – Vol. 58. – P. 422–427. – doi: 10.1016/j.procir.2017.03.247.
- Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model // International Journal of Machine Tools and Manufacture. – 2008. – Vol. 48. – P. 832–840. – doi: 10.1016/j.ijmachtools.2007.12.001.
- Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding // Procedia CIRP. – 2012. – Vol. 1. – P. 382–387. – doi: 10.1016/j.procir.2012.04.068.
- Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface / J. Jung, P. Kim, H. Kim, J. Seok // Simulation Modeling Practice and Theory. – 2015. – Vol. 57. – P. 88–99. – doi: 10.1016/j.simpat.2015.06.005.
- Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 86. – P. 1933–1943. – doi: 10.1007/s00170-015-8262-0.
- Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding // The International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 75. – P. 1245–1252. – doi: 10.1007/s00170-014-6189-5.
- Soler Ya.I., Le N.V., Si M.D. Influence of rigidity of the hardened parts on forming the shape accuracy during flat grinding // MATEC Web of Conferences. – 2017. – Vol. 129. – P. 01076. – doi: 10.1051/matecconf/201712901076.
- Солер Я.И., Хоанг Н.А. Влияние глубины резания на высотные шероховатости инструментов из стали У10А при плоском шлифовании кругами из кубического нитрида бора // Авиамашиностроение и транспорт Сибири: сборник статей IX Всероссийской научно-практической конференции / Иркутский национальный исследовательский технический университет. – Иркутск, 2017. – С. 250–254.
- Бубнов В.А., Князев А.Н. Титан и его сплавы в машиностроении // Вестник Курганского государственного университета. Серия: Технические науки. – 2016. – № 3 (42). – С. 92–96.
- Носенко В.А., Федотов Е.В., Даниленко М.В. Математическое моделирование распределения вершин зерен при шлифовании в результате различных видов изнашивания с использованием марковских случайных процессов // Международный научно-исследовательский журнал. – 2015. – № 2-1 (33). – С. 101–106.
- Gorbatyuk S.M., Kochanov A.V. Method and equipment for mechanically strengthening the surface of rolling-mill rolls // Metallurgist. – 2012. – Vol. 56, N 3–4. – P. 279–283.
- Вероятностная модель удаления поверхностного слоя при шлифовании хрупких неметаллических материалов / С.М. Братан, С.И. Рощупкин, А.О. Харченко, А.С. Часовитина // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 2. – С. 6–16. – doi: 10.17212/1994-6309-2021-23.2-6-16.
- Bratan S., Roshchupkin S., Chasovitina A. The correlation of movements in the technological system during grinding precise holes // Materials Science Forum. – 2021. – Vol. 1037. – P. 384–389. – doi: 10.4028/ href='www.scientific.net/MSF.1037.384' target='_blank'>www.scientific.net/MSF.1037.384.
- Kharchenko A., Chasovitina A., Bratan S. Modeling of regularities of change in profile sizes and wear areas of abrasive wheel grains during grinding // Materials Today: Proceedings. – 2021. – Vol. 38, pt. 4. – P. 2088–2091. – doi: 10.1016/j.matpr.2020.10.154.
Supplementary files

