The past, present, and future of anesthetic management in total knee arthroplasty: a descriptive literature review

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The number of patients with osteoarthritis of large joints in the Russian Federation may reach 4 million, with the demand for knee arthroplasty estimated at approximately 300,000 procedures annually. Improved osteoarthritis diagnostics, increased life expectancy, and advancements in prosthetic technologies have driven the rise in knee arthroplasties. However, unresolved challenges related to anesthetic management for such surgeries underscore the importance of effective pain management during total knee arthroplasty (TKA) from both scientific and practical perspectives. Anesthetic techniques for TKA have evolved significantly over time. Advances in medical knowledge and technology have led to the development and refinement of various anesthetic approaches aimed at improving patient outcomes. Historically, general and infiltration anesthesia, along with neuraxial blocks, were used. The introduction of ultrasound-guided (US-guided) techniques has expanded the use of peripheral nerve blocks. Current practices include multimodal general anesthesia, spinal anesthesia, and, less commonly, epidural anesthesia. US-guided techniques encompass obturator nerve block, anterior-medial and posterior-lateral capsule blocks, periarticular infiltration, “four-in-one” block, and selective genicular nerve blocks, among others. Future directions in anesthetic management for TKA include evaluating the clinical efficacy of radiofrequency catheter ablation and cryoablation. Additionally, addressing the significant challenge of rebound pain by identifying its causes and developing effective treatment strategies is essential. The global increase in TKA volumes presents a challenge for anesthesiologists and surgeons, emphasizing the need to further advance regional anesthesia techniques to improve recovery quality following surgery.

作者简介

Maria Seregina

Buyanov City Clinical Hospital

编辑信件的主要联系方式.
Email: seregina.maria@inbox.ru
ORCID iD: 0009-0001-3550-7667

MD, anesthesiologist-resuscitator

俄罗斯联邦, 26 Bakinskaya street, 115516 Moscow

Diana Balikova

Buyanov City Clinical Hospital

Email: balikova97@mail.ru
ORCID iD: 0009-0007-7914-2122

MD, anesthesiologist-resuscitator

俄罗斯联邦, 26 Bakinskaya street, 115516 Moscow

Ivan Scholin

Buyanov City Clinical Hospital

Email: scholin.i@mail.ru
ORCID iD: 0000-0003-2770-2857
SPIN 代码: 8730-4250

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 26 Bakinskaya street, 115516 Moscow

Victor Suryakhin

Buyanov City Clinical Hospital

Email: surjakhin@mail.ru
ORCID iD: 0000-0001-9651-4759

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 26 Bakinskaya street, 115516 Moscow

Victor Koriachkin

St. Petersburg State Paediatric Medical University; Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vakoryachkin@mail.ru
ORCID iD: 0000-0002-3400-8989
SPIN 代码: 6101-0578

MD, Dr. Sci. (Medicine), department professor

俄罗斯联邦, 2 Litovskaya street, 194100 Saint Petersburg; St. Petersburg

参考

  1. Balabanova RM, Dubinina TV. Five-year (2013–2017) trends in the incidence and prevalence of musculoskeletal system diseases among the adult population of Russia. Modern Rheumatology Journal. 2019;13(4):11–17. doi: 10.14412/1996-7012-2019-4-11-17
  2. Chililov AM, Oskov YuI, Zelenova OV, Abramov SI. Analysis of epidemiological indicators of osteoarthritis according to the given forms of state statistical observation for the period 2017-2021 in the Russian Federation. Current problems of health care and medical statistics. 2023;2:123–141. doi: 10.24412/2312-2935-2023-2-123-142
  3. Koriachkin VA, Zabolotski DV, Kuzmin VV, et al. Anaesthesia for hip fracture surgery in geriatric patients (Clinical guidelines). Regional Anesthesia and Acute Pain Management. 2017;11(2):133–142. doi: 10.17816/RA42873
  4. Steinmetz J, Culbreth G, Vos T, et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5:e508–22. doi: 10.1016/S2665-9913(23)00163-7
  5. Inacio MCS, Paxton EW, Graves SE, et al. Projected increase in total knee arthroplasty in the United States - an alternative projection model. Osteoarthritis Cartilage. 2017;25(11):1797–1803. doi: 10.1016/j.joca.2017.07.022
  6. Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–785. doi: 10.2106/JBJS.F.00222
  7. Ackerman IN, Bohensky MA, Zomer E, et al. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Musculoskelet Disord. 2019;20(1):90. doi: 10.1186/s12891-019-2411-9
  8. Culliford D, Maskell J, Judge A, et al. Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink. Osteoarthritis Cartilage. 2015;23(4):594–600. doi: 10.1016/j.joca.2014.12.022
  9. Wilson R, Abbott JH. The projected burden of knee osteoarthritis in New Zealand: healthcare expenditure and total joint replacement provision. N Z Med J. 2019;132(1503):53–65.
  10. Daugberg L, Jakobsen T, Nielsen PT, et al. A projection of primary knee replacement in Denmark from 2020 to 2050. Acta Orthop. 2021;92(4):448–451. doi: 10.1080/17453674.2021.1894787
  11. Nemes S, Gordon M, Rogmark C, Rolfson O. Projections of total hip replacement in Sweden from 2013 to 2030. Acta Orthop. 2014;85(3):238–243. doi: 10.3109/17453674.2014.913224
  12. Berninger MT, Friederichs J, Leidinger W, et al. Effect of local infiltration analgesia, peripheral nerve blocks, general and spinal anesthesia on early functional recovery and pain control in total knee arthroplasty. BMC Musculoskelet Disord. 2018;19(1):232. doi: 10.1186/s12891-018-2154-z
  13. Ranawat CS. History of total knee replacement. J South Orthop Assoc. 2002;11(4):218–226.
  14. asra.com [Internet]. Turner JD, Weller RS. How I Used to Do It: Anesthesia and Analgesia for Total Knee Arthroplasty: Four Decades of Evolution. [updated 06 Aug 19; cited 2024 Jun 12]. Available from: https://www.asra.com/news-publications/asra-newsletter/newsletter-item/asra-news/2019/08/06/how-i-used-to-do-it-anesthesia-and-analgesia-for-total-knee-arthroplasty-four-decades-of-evolution
  15. Kettner SC, Willschke H, Marhofer P. Does regional anaesthesia really improve outcome? Br J Anaesth. 2011;107 Suppl 1:i90-5. doi: 10.1093/bja/aer340
  16. Gadsden JC. The role of peripheral nerve stimulation in the era of ultrasound-guided regional anaesthesia. Anaesthesia. 2021;76(Suppl 1):65–73. doi: 10.1111/anae.15257
  17. Soffin EM, Wu CL. Regional and Multimodal Analgesia to Reduce Opioid Use After Total Joint Arthroplasty: A Narrative Review. HSS J. 2019;15(1):57–65. doi: 10.1007/s11420-018-9652-2
  18. Lapidus O, Baekkevold M, Rotzius P, et al. Preoperative administration of local infiltration anaesthesia decreases perioperative blood loss during total knee arthroplasty - a randomised controlled trial. J Exp Orthop. 20222;9(1):118. doi: 10.1186/s40634-022-00552-1
  19. Wainwright TW, Gill M, Mcdonald DA, et al. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop. 2020;91(3):363. doi: 10.1080/17453674.2020.1724674
  20. Memtsoudis SG, Cozowicz C, Bekeris J, et al. Peripheral nerve block anesthesia/analgesia for patients undergoing primary hip and knee arthroplasty: recommendations from the International Consensus on Anesthesia-Related Outcomes after Surgery (ICAROS) group based on a systematic review and meta-analysis of current literature. Reg Anesth Pain Med. 2021;46(11):971–985. doi: 10.1136/rapm-2021-102750
  21. Hutton M, Brull R, Macfarlane AJR. Regional anaesthesia and outcomes. BJA Educ. 2018;18(2):52–56. doi: 10.1016/j.bjae.2017.10.002.
  22. Macfarlane AJ, Prasad GA, Chan VW, Brull R. Does regional anesthesia improve outcome after total knee arthroplasty? Clin Orthop Relat Res. 2009;467(9):2379–2402. doi: 10.1007/s11999-008-0666-9
  23. Johnson RL, Kopp SL, Burkle CM, et al. Neuraxial vs general anaesthesia for total hip and total knee arthroplasty: a systematic review of comparative-effectiveness research. Br J Anaesth. 2016;116(2):163–176. doi: 10.1093/bja/aev455
  24. Memtsoudis SG, Rasul R, Suzuki S, et al. Does the impact of the type of anesthesia on outcomes differ by patient age and comorbidity burden? Reg Anesth Pain Med. 2014;39(2):112–119. doi: 10.1097/AAP.0000000000000055
  25. Neuman MD, Feng R, Carson JL, Gaskins LJ, Dillane D, Sessler DI, et al. Spinal Anesthesia or General Anesthesia for Hip Surgery in Older Adults. N Engl J Med. 2021;385:2025–2035. doi: 10.1056/NEJMoa2113514
  26. Liu S, Chen J, Shi H, et al. Comparing perioperative outcomes between regional anesthesia and general anesthesia in patients undergoing hip fracture surgery: a systematic review and meta-analysis. Can J Anaesth. 2024;71(6):849–869. doi: 10.1007/s12630-024-02696-3
  27. Vail EA, Feng R, Sieber F, et al. Long-term Outcomes with Spinal versus General Anesthesia for Hip Fracture Surgery: A Randomized Trial. Anesthesiology. 2024;140(3):375–386. doi: 10.1097/ALN.0000000000004807
  28. Kopp SL, Børglum J, Buvanendran A, et al. Anesthesia and Analgesia Practice Pathway Options for Total Knee Arthroplasty: An Evidence-Based Review by the American and European Societies of Regional Anesthesia and Pain Medicine. Reg Anesth Pain Med. 2017;42(6):683–697. doi: 10.1097/AAP.0000000000000673
  29. Capdevila X, Barthelet Y, Biboulet P, et al. Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery. Anesthesiology. 1999;91(1):8–15. doi: 10.1097/00000542-199907000-00006
  30. Singelyn FJ, Deyaert M, Joris D, et al. Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous three-in-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty. Anesth Analg. 1998;87(1):88–92. doi: 10.1097/00000539-199807000-00019
  31. Owen AR, Amundson AW, Larson DR, et al. Spinal Versus General Anesthesia in Contemporary Revision Total Knee Arthroplasties. J Arthroplasty. 2023;38(6S):S271–S274.e1. doi: 10.1016/j.arth.2023.01.053
  32. Wilson JM, Farley KX, Erens GA, Guild GN 3rd. General vs Spinal Anesthesia for Revision Total Knee Arthroplasty: Do Complication Rates Differ? J Arthroplasty. 2019;34(7):1417–1422. doi: 10.1016/j.arth.2019.03.048
  33. Park MR, Kim D, Rhyu IJ, et al. An anatomical neurovascular study for procedures targeting peri-articular nerves in patients with anterior knee pain. Knee. 2020;27(5):1577–1584. doi: 10.1016/j.knee.2020.08.006
  34. Burckett-St Laurant D, Peng P, Girón Arango L, et al. The Nerves of the Adductor Canal and the Innervation of the Knee: An Anatomic Study. Reg Anesth Pain Med. 2016;41(3):321–327. doi: 10.1097/AAP.0000000000000389
  35. Koriachkin VA, Zabolotskii DV, Gribanov DV, Antoshkova TA. Obturator nerve block. Regional Anesthesia and Acute Pain Management. 2021;14(3):130–140. doi: 10.17816/RA57660
  36. Runge C, Børglum J, Jensen JM, et al. The Analgesic Effect of Obturator Nerve Block Added to a Femoral Triangle Block After Total Knee Arthroplasty: A Randomized Controlled Trial. Reg Anesth Pain Med. 2016;41(4):445–451. doi: 10.1097/AAP.0000000000000406
  37. Hasegawa M, Singh D, Urits I, Pi M, et al. Review on Nerve Blocks Utilized for Perioperative Total Knee Arthroplasty Analgesia. Orthop Rev (Pavia). 2022;14(3):37405. doi: 10.52965/001c.37405
  38. Winnie AP, Ramamurthy S, Durrani Z. The inguinal paravascular technic of lumbar plexus anesthesia: the “3-in-1 block”. Anesth Analg. 1973;52(6):989–996. doi: 10.1213/00000539-197311000-00036
  39. Memtsoudis SG, Danninger T, Rasul R, et al. Inpatient falls after total knee arthroplasty: the role of anesthesia type and peripheral nerve blocks. Anesthesiology. 2014;120(3):551–563. doi: 10.1097/ALN.0000000000000120
  40. Bauer M, Wang L, Onibonoje OK, et al. Continuous femoral nerve blocks: decreasing local anesthetic concentration to minimize quadriceps femoris weakness. Anesthesiology. 2012;116(3):665–672. doi: 10.1097/ALN.0b013e3182475c35
  41. Mariano ER, Loland VJ, Sandhu NS, et al. Ultrasound guidance versus electrical stimulation for femoral perineural catheter insertion. J Ultrasound Med. 2009;28(11):1453–1460. doi: 10.7863/jum.2009.28.11.1453
  42. Lund J, Jenstrup MT, Jaeger P, et al. Continuous adductor-canalblockade for adjuvant post-operative analgesia after major knee surgery: preliminary results. Acta Anaesthesiol Scand. 2011;55(1):14–19. doi: 10.1111/j.1399-6576.2010.02333.x
  43. Machi AT, Sztain JF, Kormylo NJ, et al. Discharge readiness after tricompartment knee arthroplasty: adductor canal versus femoral continuous nerve blocks-a dual-center, randomized trial. Anesthesiology. 2015;123(2):444–456. doi: 10.1097/ALN.0000000000000741
  44. Silva De Mello S, Soares Marques R, Alves de Assis J. ESRA19-0245 Vastus medialis nerve block using neurostimulation associated to ipack and adductor canal block for postoperative analgesia in anterior cruciate ligament reconstruction: a pilot study. Regional Anesthesia & Pain Medicine. 2019;44:A225. doi: 10.1136/rapm-2019-ESRAABS2019.396
  45. Chuan A, Lansdown A, Brick KL, et al. Adductor canal versus femoral triangle anatomical locations for continuous catheter analgesia after total knee arthroplasty: a multicentre randomised controlled study. Br J Anaesth. 2019;123(3):360–367. doi: 10.1016/j.bja.2019.03.021
  46. Gong WY, Li CG, Zhang JY, et al. Motor-sparing peripatellar plexus block provides noninferior block duration and complete block area of the peripatellar region compared with femoral nerve block: a randomized, controlled, noninferiority study. BMC Anesthesiol. 2022;22(1):334. doi: 10.1186/s12871-022-01863-7
  47. Guo J, Hou M, Shi G, et al. iPACK block (local anesthetic infiltration of the interspace between the popliteal artery and the posterior knee capsule) added to the adductor canal blocks versus the adductor canal blocks in the pain management after total knee arthroplasty: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):387. doi: 10.1186/s13018-022-03272-5
  48. Hannon CP, Fillingham YA, Spangehl MJ, et al. The Efficacy and Safety of Periarticular Injection in Total Joint Arthroplasty: A Direct Meta-Analysis. J Arthroplasty. 2022;37(10):1928–1938.e9. doi: 10.1016/j.arth.2022.03.045
  49. Andrianova TO, Ezhevskaya AA, Gerasimov SA, et al. Optimal technique of postoperative analgesia in knee replacement surgery: a double-blind randomized study. Russian Journal of Anesthesiology and Reanimatology. 2023;(2):34–43. doi: 10.17116/anaesthesiology202302134
  50. Ilfeld B. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth Analg. 2017;124(1):308–335. doi: 10.1213/ANE.0000000000001581
  51. Gomzhina E.A., Geraskov E.V., Ovsyankin A.V., Koryachkin V.A. Efficiency of early postoperative rehabilitation in primary total knee arthroplasty depending on methods of postoperative analgesia. RMJ. 2017;13:953–956. EDN: ZIHBBH
  52. Roy R, Agarwal G, Pradhan C, et al. Ultrasound guided 4 in 1 block – a newer, single injection technique for complete postoperative analgesia for knee and below knee surgeries. Anaesth Pain & Intensive Care. 2018;22(1):87–93.
  53. Roy R, Agarwal G, Pradhan C, Kuanar D. Total postoperative analgesia for total knee arthroplasty: Ultrasound guided single injection modified 4 in 1 block. J Anaesthesiol Clin Pharmacol. 2020;36(2):261–264. doi: 10.4103/joacp.JOACP_260_19
  54. asra.com [Internet]. Dunworth S, Gadsden J. How I Do It: Genicular Nerve Blocks for Acute Pain May. [updated 01 May 22; cited 2024 May 12]. Available from: https://www.asra.com/news-publications/asra-newsletter/newsletter-item/asra-news/2022/05/01/how-i-do-it-genicular-nerve-blocks-for-acute-pain
  55. Walega D, McCormick Z, Manning D, Avram M. Radiofrequency ablation of genicular nerves prior to total knee replacement has no effect on postoperative pain outcomes: a prospective randomized sham-controlled trial with 6-month follow-up. Reg Anesth Pain Med. 2019;44:646–651. doi: 10.1136/rapm-2018-100094
  56. Lyman JR, Olscamp AJ, Lovell TP, et al. Radiofrequency ablation prior to total knee arthroplasty does not improve post-surgical pain or recovery: a double-blinded, multi-center, randomized clinical trial. Ann Jt. 2023;8:5. doi: 10.21037/aoj-22-33
  57. Stake S, Agarwal AR, Coombs S, et al. Total Knee Arthroplasty After Genicular Nerve Radiofrequency Ablation: Reduction in Prolonged Opioid Use Without Increased Postsurgical Complications. J Am Acad Orthop Surg Glob Res Rev. 2022;6(8):e22.00125. doi: 10.5435/JAAOSGlobal-D-22-00125
  58. Cheppalli N, Bhandarkar AW, Sambandham S, Oloyede SF. Safety and Efficacy of Genicular Nerve Radiofrequency Ablation for Management of Painful Total Knee Replacement: A Systematic Review. Cureus. 2021;13(11):e19489. doi: 10.7759/cureus.19489
  59. Choi EJ, Choi YM, Jang EJ, et al. Neural Ablation and Regeneration in Pain Practice. Korean J Pain. 2016;29(1):3–11. doi: 10.3344/kjp.2016.29.1.3
  60. Pain Medicine Group [Internet]. What to expect after a radio frequency ablation procedure. [updated 16 Aug 18; cited 2024 Jun 12]. Pain Medicine Group Blog [about 4 screens]. Available from: https://www.painmedicinegroup.com/blog/what-to-expect-after-a-radio-frequency-ablation-procedure
  61. Wu L, Li Y, Si H, et al. Radiofrequency Ablation in Cooled Monopolar or Conventional Bipolar Modality Yields More Beneficial Short-Term Clinical Outcomes Versus Other Treatments for Knee Osteoarthritis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Arthroscopy. 2022;38(7):2287–2302. doi: 10.1016/j.arthro.2022.01.048
  62. Panagopoulos A, Tsiplakos P, Katsanos K, et al. Cooled radiofrequency ablation versus cryoneurolysis of the genicular nerves for the symptomatic pain management in knee osteoarthritis: a study protocol of a prospective, randomized, single-blinded clinical trial. J Orthop Surg Res. 2023;18(1):295. doi: 10.1186/s13018-023-03737-1
  63. Llobet Rosell A, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 2019;9(8):190118. doi: 10.1098/rsob.190118
  64. Roth ZA, Sutton K, Wenende J, Pecka S. Preoperative Cryoneurolysis for Total Knee Arthroplasty: A Case Series. J Perianesth Nurs. 2023;38(1):33–38. doi: 10.1016/j.jopan.2022.03.006
  65. Dasa V. Cryoanalgesia in Knee Replacement Surgery. Journal of Orthopaedic Experience & Innovation. 2022;3(Issue 2). doi: 10.60118/001c.55623
  66. Wylde V, Beswick A, Bruce J, et al. Chronic pain after total knee arthroplasty. EFORT Open Rev. 2018;3(8):461–470. doi: 10.1302/2058-5241.3.180004
  67. Zhou R, Jiang W, Miao Q, et al. Current Status and Global Trend of Rebound Pain After Regional Anesthesia: A Bibliometric Analysis. Local Reg Anesth. 2024;17:67–77 doi: 10.2147/LRA.S455347
  68. Lavand’homme P. Rebound pain after regional anesthesia in the ambulatory patient. Curr Opin Anaesthesiol. 2018;31(6):679–684. doi: 10.1097/ACO.0000000000000651
  69. Ferry J, Lewis O, Lloyd J, et al. Research priorities in regional anaesthesia: an international Delphi study. Br J Anaesth. 2024;132(5):1041–1048. doi: 10.1016/j.bja.2024.01.033
  70. Hade AD, Okano S, Pelecanos A, Chin A. Factors associated with low levels of patient satisfaction following peripheral nerve block. Anaesth Intensive Care. 2021;49(2):125–132. doi: 10.1177/0310057X20972404
  71. Singh NP, Makkar JK, Chawla JK, et al. Prophylactic dexamethasone for rebound pain after peripheral nerve block in adult surgical patients: systematic review, meta-analysis, and trial sequential analysis of randomised controlled trials. Br J Anaesth. 2024;132(5):1112–1121. doi: 10.1016/j.bja.2023.09.022
  72. Touil N, Pavlopoulou A, Delande S, Geradon P, Barbier O, Libouton X, et al. Effect of intravenous dexamethasone dose on the occurrence of rebound pain after axillary plexus block in ambulatory surgery. J Clin Med. 2023;12(13):4310. doi: 10.3390/jcm12134310
  73. Bhatia P, Metta R. Rebound pain: Undesired, yet unexplored. J Anaesthesiol Clin Pharmacol. 2022;38(4):527–528. doi: 10.4103/joacp.joacp_435_22
  74. Barry GS, Bailey JG, Sardinha J, Brousseau P, Uppal V. Factors associated with rebound pain after peripheral nerve block for ambulatory surgery. Br J Anaesth. 2021;126(4):862–871. doi: 10.1016/j.bja.2020.10.035

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».