ОСНОВНЫЕ ПРИНЦИПЫ ЭКСПЕРИМЕНТАЛЬНОГО МОДЕЛИРОВАНИЯ РЕТИНОПАТИИ НЕДОНОШЕННЫХ НА ЖИВОТНЫХ


Цитировать

Полный текст

Аннотация

В обзоре представлены основы моделирования ретинопатии недоношенных на животных и дано описание существующих моделей. Обсуждается значение создания и совершенствования моделей с использованием животных в плане изучения патогенеза ретинопатии недоношенных и поиска новых подходов к лечению данного заболевания.

Об авторах

Л. А Катаргина

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

Н. А Осипова

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

Список литературы

  1. Dorfman A., Dembinska O., Chemtob S., Lachapelle P. Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest. Ophthalmol. Vis. Sci. 2008; 49(1): 458—66.
  2. Dorfman A.L., Cuenca N., Pinilla I., Chemtob S., Lachapelle P. Immuno-histochemical evidence of synaptic retraction, cytoarchitectural remodeling, and cell death in the inner retina of the rat model of oxygen-induced retinopathy (OIR). Invest. Ophthalmol. Vis. Sci. 2011; 52 (3): 1693—708.
  3. Dorfman A.L., Polosa A., Joly S., Chemtob S., Lachapelle P. Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50(5): 2436-2450.
  4. Fulton A.B., Hansen R.M., Moskowitz A., Akula J.D. The neurovascular retina in retinopathy of prematurity. Progr. Retin. Eye Res. 2009; 28(6): 452—82.
  5. Grossniklaus H.E., Kang S.J., Berglin L. Animal models of choroidal and retinal neovascularization. Progr. Retin. Eye Res. 2010; 29 (6): 500—19.
  6. Hartnett M.E. Studies on the pathogenesis of avascular retina and neo-vasculatization into the vitreous in peripheral severe retinopathy of prematurity (An American Ophthalmological Society Thesis). Trans. Am. Ophthalmol. Soc. 2010; 108: 96—119.
  7. Hartnett M.E., Penn J.S. Mechanisms and management of retinopathy of prematurity. N. Engl. J. Med. 2012; 367 (26): 2515—26.
  8. Ozkan H., Duman N., Kumral A., Kasap B., Ozer E.A., Lebe B. et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity. Physiol. Res. 2006; 55 (3): 267—75.
  9. Penn J.S., Tolman B.L., Lowery L.A. Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest. Ophthalmol. Vis. Sci. 1993; 34 (3): 576—85.
  10. Byfield G., Budd S., Hartnett M.E. Supplemental oxygen can cause intravitre-ous neovascularization through JAK/STAT pathways in a model of retinopathy of prematurity. Invest. Ophthalmol. Vis Sci. 2009; 50 (7): 3360—5.
  11. Saito Y., Uppal A., Byfield G., Budd S., Hartnett M.E. Activated NAD(P) H oxidase from supplemental oxygen induces neovascularization independent of vegf in retinopathy of prematurity model. Invest. Ophthalmol. Vis. Sci. 2008; 49 (4): 1591—8.
  12. Penn J.S., Thum L.A., Naash M.I. Oxygen-Induced Retinopafhy in the Rat. Vitamins C and E as potential therapies. Invest. Ophthalmol. Vis. Sci. 1992; 33 (6): 1836—45.
  13. Saito Y., Geisen P., Uppal A., Hartnett M.E. Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol. Vis. 2007; 13: 840—53.
  14. Cunningham S., McColm J.R., Wade J., Sedowofia K., McIntosh N., Fleck B. A novel model of retinopathy of prematurity simulating preterm oxygen variability in the rat. Invest. Ophthalmol. Vis. Sci. 2000; 41 (13): 4275—80.
  15. Tea M., Fogarty R., Brereton HM., Michael M.Z., Van der HoekM.B., Tsykin A. et al. Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J. Ocul. Biol. Dis. Infor. 2009; 2 (4): 190—201.
  16. Barnett J.M., Yanni S.E., Penn J.S. The development of rat model of retinopathy of prematurity. Docum. Ophthalmol. 2010; 120 (1): 3—12.
  17. Ashton N., Blach R. Communications studies on developing retinal vessels. Brit. J. Ophthalmol. 1961; 45 (5): 321—40.
  18. Kremer I., Kissun R., Nissenkorn I., Ben-Sira I., Garnerf A. Oxygen-induced refinopathy in newborn kittens. Invest. Ophthalmol. Vis. Sci. 1987; 28: 126—30.
  19. McLeod D.S., Brownstein R., Lutty G.A. Vaso-obliteration in the canine model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 1996; 37 (2): 300—11.
  20. Smith L.E., Wesolowski E., McLellan A., Kostyk S.K., D’Amato R., Sullivan R. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 1994; 35 (1): 101—11.
  21. Reynaud X., Dorey C.K. Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Invest. Ophthalmol. Vis. Sci. 1994; 35 (8): 3169—77.
  22. Penn J.S., Henry M.M., Wall P.T., Tolman B.L. The range of Pao2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest. Ophthalmol. Vis. Sci. 1995; 36 (10): 2063—70.
  23. Penn J.S., Tolman B.L., Henry MM. Oxygen-induced retinopathy in the rat: Relationship of retinal nonperfusion to subsequent neovascularization. Invest. Ophthalmol. Vis. Sci. 1994; 35 (9): 3429—35.
  24. Geisen P., Peterson L.J., Martiniuk D., Uppal A., Saito Y., Hartnett M.E. Neutralizing antibody to VEGF reduces intravitreous neovascularization and may not interfere with ongoing intraretinal vascularization in a rat model of retinopathy of prematurity. Mol. Vis. 2008; 14: 345—57.
  25. Liu K., Akula J.D., Falk C., Hansen RM., Fulton A.B. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2006; 47 (6): 2639—47.
  26. Holmes J.M., Zhang S., Leske D.A., Lanier W.L. Metabolic acidosis-induced retinopathy in the neonatal rat. Invest. Ophthalmol. Vis. Sci. 1999; 40 (3): 804—9.
  27. Floyd B.N., Leske D.A., Wren S.M., Mookadam M., Fautsch M.P., Holmes JM. Differences between rat strains in models of retinopathy of prematurity. Mol. Vis. 2005; 11: 524—30.
  28. Zhang W., Ito Y., Berlin E., Roberts R., Berkowitz B.A. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2003; 44 (7): 3119—23.
  29. Wijngaarden van P., Brereton M.P., Coster D.J., Williams K.A. Genetic Influences on Susceptibility to Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci. 2007; 48 (4): 1761—6.
  30. Akula J.D., Mocko J.A., Benador I.Y., Hansen R.M., Favazza T.L., Vyhovsky T.C. et al. The neurovascular relation in oxygen-induced retinopathy. Mol. Vis. 2008; 14: 2499—508.
  31. Barnett JM., McCollum G.W., Penn J.S. Role of cytosolic phospholipase A2 in retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 2010; 51 (2): 1136—42.
  32. Budd S., Byfield G., Martiniuk D., Geisen P., Hartnett M.E. Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp. Eye. Res. 2009; 89 (5): 718—27.
  33. Budd S.J., Hartnett M.E. Increased angiogenic factors during avascular retina prior to neovascularization in ROP model. Arch. Ophthalmol. 2010; 128 (5): 589—95.
  34. Hartmann J.S., Thompson H., Wang H., Kanekar S., Huang W., Budd S.J. et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity. Mol. Vis. 2011; 17: 1577—87.
  35. Leske D.A., Wu J., Fautsch M.P., Karge rR.A., Berdahl J.P., Lanier W.L. et al. The role of VEGF and IGF-1 in a hypercarbic oxygen-induced retinopathy rat model of ROP. Mol. Vis. 2004; 10: 43—50.
  36. Wilkinson-Berka J.L., Babic S., De Gooyer T., Stitt A.W., Jaworski K., Ong L.G. et al. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am. J. Pathol. 2004; 164 (4): 1263—73.
  37. Basu A., Menicucci G., Maestas J., Das A., McGuire P. Plasminogen Activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50 (10): 4974—81.
  38. Tawfik A., Sanders T., Kahoo K., Akeel S., Elmarakby A., Al-Shabrawey M. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest. Ophthalmol. Vis. Sci. 2009; 50 (2): 878—84.
  39. Tian X.F., Xia X.B., Xu H.Z., Xiong S.Q., Jiang J. Caveolin-1 expression regulates blood-retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin. Experiment. Ophthalmol. 2012; 40 (1): 58—66.
  40. Akula J.D., Mocko J.A., Moskowitz A., Hansen R.M., Fulton A.B. The Oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (12): 5788—97.
  41. Nakamura S., Imai S., Ogishima H., Tsuruma K., Shimazawa M., Hara H. Morphological and functional changes in the retina after chronic oxygen-induced retinopathy. PLoS. One. 2012; 7 (2): e32 167.
  42. Berkowitz B.A., Bissig D., Bergman D., Bercea E., Kasturi VK., Roberts R. Intraretinal calcium channels and retinal morbidity in experimental retinopathy of prematurity. Mol. Vis. 2011; 17: 2516—26.
  43. Shao Z., Dorfman A.L., Seshadri S., Djavari M., Kermorvant-Duchemin E., Sennlaub F. et al. Choroidal Involution Is a Key Component of Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci. 2011; 52 (9): 6238—48.
  44. Hardy P., Dumont I., Bhattacharya M., Hou X., Lachapelle P., Varma D.R. et al. Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Cardiovasc. Res. 2000; 47 (3): 489—509.
  45. Akula J.D., Hansen R.M., Martinez-Perez M.E., Fulton A.B. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (9): 4351—9.
  46. Fulton A.B., Akula J.D., Mocko J.A., Hansen R.M., Benador I.Y., Beck S.C. et al. Retinal degenerative and hypoxic ischemic disease. Docum. Ophthalmol. 2009; 118 (1): 55—61.
  47. Zhang Y., Stone J. Role of astrocytes in the control of developing retinal vessels. Invest. Ophthalmol. Vis. Sci. 1997; 38 (9): 1653—66.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2014


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».