ОСНОВНЫЕ ПРИНЦИПЫ ЭКСПЕРИМЕНТАЛЬНОГО МОДЕЛИРОВАНИЯ РЕТИНОПАТИИ НЕДОНОШЕННЫХ НА ЖИВОТНЫХ
- Авторы: Катаргина Л.А1, Осипова Н.А1
-
Учреждения:
- ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
- Выпуск: Том 9, № 1 (2014)
- Страницы: 56-60
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1993-1859/article/view/37602
- DOI: https://doi.org/10.17816/rpoj37602
- ID: 37602
Цитировать
Полный текст
Аннотация
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Л. А Катаргина
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Н. А Осипова
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Список литературы
- Dorfman A., Dembinska O., Chemtob S., Lachapelle P. Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest. Ophthalmol. Vis. Sci. 2008; 49(1): 458—66.
- Dorfman A.L., Cuenca N., Pinilla I., Chemtob S., Lachapelle P. Immuno-histochemical evidence of synaptic retraction, cytoarchitectural remodeling, and cell death in the inner retina of the rat model of oxygen-induced retinopathy (OIR). Invest. Ophthalmol. Vis. Sci. 2011; 52 (3): 1693—708.
- Dorfman A.L., Polosa A., Joly S., Chemtob S., Lachapelle P. Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50(5): 2436-2450.
- Fulton A.B., Hansen R.M., Moskowitz A., Akula J.D. The neurovascular retina in retinopathy of prematurity. Progr. Retin. Eye Res. 2009; 28(6): 452—82.
- Grossniklaus H.E., Kang S.J., Berglin L. Animal models of choroidal and retinal neovascularization. Progr. Retin. Eye Res. 2010; 29 (6): 500—19.
- Hartnett M.E. Studies on the pathogenesis of avascular retina and neo-vasculatization into the vitreous in peripheral severe retinopathy of prematurity (An American Ophthalmological Society Thesis). Trans. Am. Ophthalmol. Soc. 2010; 108: 96—119.
- Hartnett M.E., Penn J.S. Mechanisms and management of retinopathy of prematurity. N. Engl. J. Med. 2012; 367 (26): 2515—26.
- Ozkan H., Duman N., Kumral A., Kasap B., Ozer E.A., Lebe B. et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity. Physiol. Res. 2006; 55 (3): 267—75.
- Penn J.S., Tolman B.L., Lowery L.A. Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest. Ophthalmol. Vis. Sci. 1993; 34 (3): 576—85.
- Byfield G., Budd S., Hartnett M.E. Supplemental oxygen can cause intravitre-ous neovascularization through JAK/STAT pathways in a model of retinopathy of prematurity. Invest. Ophthalmol. Vis Sci. 2009; 50 (7): 3360—5.
- Saito Y., Uppal A., Byfield G., Budd S., Hartnett M.E. Activated NAD(P) H oxidase from supplemental oxygen induces neovascularization independent of vegf in retinopathy of prematurity model. Invest. Ophthalmol. Vis. Sci. 2008; 49 (4): 1591—8.
- Penn J.S., Thum L.A., Naash M.I. Oxygen-Induced Retinopafhy in the Rat. Vitamins C and E as potential therapies. Invest. Ophthalmol. Vis. Sci. 1992; 33 (6): 1836—45.
- Saito Y., Geisen P., Uppal A., Hartnett M.E. Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol. Vis. 2007; 13: 840—53.
- Cunningham S., McColm J.R., Wade J., Sedowofia K., McIntosh N., Fleck B. A novel model of retinopathy of prematurity simulating preterm oxygen variability in the rat. Invest. Ophthalmol. Vis. Sci. 2000; 41 (13): 4275—80.
- Tea M., Fogarty R., Brereton HM., Michael M.Z., Van der HoekM.B., Tsykin A. et al. Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J. Ocul. Biol. Dis. Infor. 2009; 2 (4): 190—201.
- Barnett J.M., Yanni S.E., Penn J.S. The development of rat model of retinopathy of prematurity. Docum. Ophthalmol. 2010; 120 (1): 3—12.
- Ashton N., Blach R. Communications studies on developing retinal vessels. Brit. J. Ophthalmol. 1961; 45 (5): 321—40.
- Kremer I., Kissun R., Nissenkorn I., Ben-Sira I., Garnerf A. Oxygen-induced refinopathy in newborn kittens. Invest. Ophthalmol. Vis. Sci. 1987; 28: 126—30.
- McLeod D.S., Brownstein R., Lutty G.A. Vaso-obliteration in the canine model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 1996; 37 (2): 300—11.
- Smith L.E., Wesolowski E., McLellan A., Kostyk S.K., D’Amato R., Sullivan R. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 1994; 35 (1): 101—11.
- Reynaud X., Dorey C.K. Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Invest. Ophthalmol. Vis. Sci. 1994; 35 (8): 3169—77.
- Penn J.S., Henry M.M., Wall P.T., Tolman B.L. The range of Pao2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest. Ophthalmol. Vis. Sci. 1995; 36 (10): 2063—70.
- Penn J.S., Tolman B.L., Henry MM. Oxygen-induced retinopathy in the rat: Relationship of retinal nonperfusion to subsequent neovascularization. Invest. Ophthalmol. Vis. Sci. 1994; 35 (9): 3429—35.
- Geisen P., Peterson L.J., Martiniuk D., Uppal A., Saito Y., Hartnett M.E. Neutralizing antibody to VEGF reduces intravitreous neovascularization and may not interfere with ongoing intraretinal vascularization in a rat model of retinopathy of prematurity. Mol. Vis. 2008; 14: 345—57.
- Liu K., Akula J.D., Falk C., Hansen RM., Fulton A.B. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2006; 47 (6): 2639—47.
- Holmes J.M., Zhang S., Leske D.A., Lanier W.L. Metabolic acidosis-induced retinopathy in the neonatal rat. Invest. Ophthalmol. Vis. Sci. 1999; 40 (3): 804—9.
- Floyd B.N., Leske D.A., Wren S.M., Mookadam M., Fautsch M.P., Holmes JM. Differences between rat strains in models of retinopathy of prematurity. Mol. Vis. 2005; 11: 524—30.
- Zhang W., Ito Y., Berlin E., Roberts R., Berkowitz B.A. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2003; 44 (7): 3119—23.
- Wijngaarden van P., Brereton M.P., Coster D.J., Williams K.A. Genetic Influences on Susceptibility to Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci. 2007; 48 (4): 1761—6.
- Akula J.D., Mocko J.A., Benador I.Y., Hansen R.M., Favazza T.L., Vyhovsky T.C. et al. The neurovascular relation in oxygen-induced retinopathy. Mol. Vis. 2008; 14: 2499—508.
- Barnett JM., McCollum G.W., Penn J.S. Role of cytosolic phospholipase A2 in retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 2010; 51 (2): 1136—42.
- Budd S., Byfield G., Martiniuk D., Geisen P., Hartnett M.E. Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp. Eye. Res. 2009; 89 (5): 718—27.
- Budd S.J., Hartnett M.E. Increased angiogenic factors during avascular retina prior to neovascularization in ROP model. Arch. Ophthalmol. 2010; 128 (5): 589—95.
- Hartmann J.S., Thompson H., Wang H., Kanekar S., Huang W., Budd S.J. et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity. Mol. Vis. 2011; 17: 1577—87.
- Leske D.A., Wu J., Fautsch M.P., Karge rR.A., Berdahl J.P., Lanier W.L. et al. The role of VEGF and IGF-1 in a hypercarbic oxygen-induced retinopathy rat model of ROP. Mol. Vis. 2004; 10: 43—50.
- Wilkinson-Berka J.L., Babic S., De Gooyer T., Stitt A.W., Jaworski K., Ong L.G. et al. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am. J. Pathol. 2004; 164 (4): 1263—73.
- Basu A., Menicucci G., Maestas J., Das A., McGuire P. Plasminogen Activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50 (10): 4974—81.
- Tawfik A., Sanders T., Kahoo K., Akeel S., Elmarakby A., Al-Shabrawey M. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest. Ophthalmol. Vis. Sci. 2009; 50 (2): 878—84.
- Tian X.F., Xia X.B., Xu H.Z., Xiong S.Q., Jiang J. Caveolin-1 expression regulates blood-retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin. Experiment. Ophthalmol. 2012; 40 (1): 58—66.
- Akula J.D., Mocko J.A., Moskowitz A., Hansen R.M., Fulton A.B. The Oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (12): 5788—97.
- Nakamura S., Imai S., Ogishima H., Tsuruma K., Shimazawa M., Hara H. Morphological and functional changes in the retina after chronic oxygen-induced retinopathy. PLoS. One. 2012; 7 (2): e32 167.
- Berkowitz B.A., Bissig D., Bergman D., Bercea E., Kasturi VK., Roberts R. Intraretinal calcium channels and retinal morbidity in experimental retinopathy of prematurity. Mol. Vis. 2011; 17: 2516—26.
- Shao Z., Dorfman A.L., Seshadri S., Djavari M., Kermorvant-Duchemin E., Sennlaub F. et al. Choroidal Involution Is a Key Component of Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci. 2011; 52 (9): 6238—48.
- Hardy P., Dumont I., Bhattacharya M., Hou X., Lachapelle P., Varma D.R. et al. Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Cardiovasc. Res. 2000; 47 (3): 489—509.
- Akula J.D., Hansen R.M., Martinez-Perez M.E., Fulton A.B. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (9): 4351—9.
- Fulton A.B., Akula J.D., Mocko J.A., Hansen R.M., Benador I.Y., Beck S.C. et al. Retinal degenerative and hypoxic ischemic disease. Docum. Ophthalmol. 2009; 118 (1): 55—61.
- Zhang Y., Stone J. Role of astrocytes in the control of developing retinal vessels. Invest. Ophthalmol. Vis. Sci. 1997; 38 (9): 1653—66.
Дополнительные файлы
