Численный метод определения параметров модели ползучести разупрочняющегося материала


Цитировать

Полный текст

Аннотация

Тенденции к уменьшению массы машин при улучшении их качества, а также стремление к наиболее полному использованию механических свойств материалов требуют постоянного совершенствования и развития известных методов расчета и анализа напряженно-деформированного состояния материалов в условиях ползучести. В статье рассматривается новый численный метод оценки параметров математической модели ползучести разупрочняющегося материала на основе экспериментальных диаграмм, построенных по результатам испытаний при различных напряжениях. В основе метода лежит обобщенная регрессионная модель, построенная на основе разностных уравнений, описывающих диаграммы ползучести. Полученные соотношения между коэффициентами разностного уравнения и параметрами деформации ползучести позволяют свести задачу параметрической идентификации к итерационной процедуре среднеквадратичного оценивания коэффициентов, линейной на каждом шаге итерации обобщенной регрессионной модели. Проведена апробация разработанного численного метода на пяти экспериментальных кривых ползучести алюминиевого сплава, подтверждающая достоверность полученных соотношений и эффективность численного метода.

Об авторах

Владимир Евгеньевич Зотеев

Самарский государственный технический университет

Email: zoteev-ve@mail.ru
(д.т.н., доц.; zoteev-ve@mail.ru; автор, ведущий переписку), профессор, каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Роман Юрьевич Макаров

Самарский государственный технический университет

Email: makaroman1@yandex.ru
(makaroman1@yandex.ru), аспирант, каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Малинин Н. Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 387 с.
  2. Соснин О. В., Любашевская И. В., Новоселя И. В. Сравнительные оценки высокотемпературной ползучести и разрушения конструкционных материалов // ПМТФ, 2008. Т. 49, № 2. С. 123-130.
  3. Bellenger E., Bussy P. Phenomenological modeling and numerical simulation of different modes of creep damage evolution // International Journal of Solids and Structures, 2001. vol. 38, no. 4. pp. 577-604. doi: 10.1016/S0020-7683(00)00042-1.
  4. Расчеты и испытания на прочность. Расчетные методы определения несущей способности и долговечности элементов машин и конструкций. М.: ВНИИМАШ, 1982. 90 с.
  5. Радченко В. П., Еремин Ю. А. Реологическое деформирование и разрушения материалов и элементов конструкций. М.: Машиностроение-1, 2004. 264 с.
  6. Демиденко Е. З. Линейная и нелинейная регрессия. М.: Финансы и статистика, 1981. 302 с.
  7. Зотеев В. Е. Параметрическая идентификация диссипативных механических систем на основе разностных уравнений / ред. В. П. Радченко. М.: Машиностроение, 2009. 344 с.
  8. Зотеев В. Е., Заусаева М. А. Определение параметров двумерных динамических процессов на основе разностных схем // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 154-161. doi: 10.14498/vsgtu781.
  9. Зотеев В. Е. Математические основы построения разностных уравнений для задач параметрической идентификации // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2008. № 2(17). С. 192-202. doi: 10.14498/vsgtu623.
  10. Зотеев В. Е. Параметрическая идентификация линейной динамической системы на основе стохастических разностных уравнений // Матем. моделирование, 2008. Т. 20, № 9. С. 120-128.
  11. Соснин О. В., Горев Б. В., Никитенко А. Ф. Энергетический вариант теории ползучести. Новосибирск: ИГиЛ СО АН СССР, 1986. 95 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».