Structural-mechanical model for describing the Portevin–Le Châtelier effect

Cover Page

Cite item

Full Text

Abstract

Despite nearly 200 years having passed since its discovery, the Portevin Le Châtelier (PLC) effect—the phenomenon of discontinuous plastic flow observed in most alloys under specific deformation conditions—remains an active research area for both mechanicians and physicists. Current studies encompass experimental investigations and theoretical developments, leading to various mathematical models, a brief review of which is presented in this work. Given the stochastic nature of the PLC effect, including the spatiotemporal distribution of slip bands and response variations during monotonic loading (as evidenced by physical and numerical experiments on variousalloy specimens), mathematical description and analysis methods for thesephenomena are of particular scientific interest.
During the model development stage, we carried out a thorough analysis of the physical mechanisms underlying the PLC effect. Two primary mechanisms were identified: (1) the formation of impurity atom clusters around temporarily arrested dislocations at obstacles, and (2) the capture of alloying element atoms by slowly moving dislocations. For modeling this effect, we propose a structural-mechanical approach to describe uniaxial tensile loading of rod specimens under kinematic control. The formulation includes fundamental constitutive and evolutionary relations based on the physical mechanisms of dislocation-impurity interactions.
A novel two-stage model identification procedure is introduced, incorporating statistical analysis and wavelet transform methods. The paper presents application results of the identified model for describing the PLC effect in Al–Mg alloy specimens, demonstrating its effectiveness in capturing the key features of discontinuous plastic flow.

About the authors

Kirill A. Mekhonoshin

Perm State National Research Polytechnical University, Applied Mathematics and Mechanics Faculty

Author for correspondence.
Email: ctrllll@vk.com
ORCID iD: 0009-0002-8549-3141
SPIN-code: 2428-7201
https://www.mathnet.ru/rus/person231392

BSC; Laboratory Researcher; Lab. of Multilevel Modeling of Structural and Functional Materials

Russian Federation, 614013, Perm, Pr. Pozdeev st., 11

Peter V. Trusov

Perm State National Research Polytechnical University, Applied Mathematics and Mechanics Faculty

Email: tpv@pstu.ru
ORCID iD: 0000-0001-8997-5493
https://www.mathnet.ru/rus/person28830

Dr. Phys. & Math. Sci., Professor; Head of Department; Dept. of Mathematical Modeling of Systems and Processes

Russian Federation, 614013, Perm, Pr. Pozdeev st., 11

References

  1. Cottrell A. H. Dislocations and plastic flow in crystals. New York, Oxford Univ. Press., 1953, 223 pp.
  2. Portevin A., Le Châtelier F. Sur un phenomene observe lors de l’essai de traction d’alliages en cours de transformation, C. R. Acad. Sci. Paris, 1923, vol. 176, pp. 507–510.
  3. McCormick P. G. The Portevin – Le Châtelier effect in an Al–Mg-Si alloy, Acta Metall., 1971, vol. 19, pp. 463–471. DOI: https://doi.org/10.1016/0001-6160(71)90170-2.
  4. Chen W., Chaturvedi M. C. On the mechanism of serrated deformation in aged Inconel 718, Mater. Sci. Eng. A., 1997, vol. 229, no. 1–2, pp. 163–168. DOI: https://doi.org/10.1016/S0921-5093(97)00005-1.
  5. Estrin Y., Lebyodkin M. A. The influence of dispersion particles on the Portevin–Le Châtelier effect: from average particle characteristics to particle arrangement, Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 195–198. EDN: LIJIZN. DOI: https://doi.org/10.1016/j.msea.2004.01.079.
  6. Wang W., Wu D., Chen R., Lou C. Influence of temperature and strain rate on serration type transition in NZ31 Mg alloy, Trans. Nonferrous Met. Soc. China, 2015, vol. 25, no. 11, pp. 3611–3617. DOI: https://doi.org/10.1016/S1003-6326(15)64002-X.
  7. Ren S. C., Morgeneyer T. F., Mazière M., et al. Portevin–Le Châtelier effect triggered by complex loading paths in an Al–Cu aluminium alloy, Philos. Mag., 2018, vol. 99, no. 6, pp. 659–678. DOI: https://doi.org/10.1080/14786435.2018.1550296.
  8. Zhang Q., Jiang Z., Jiang H., et al. On the propagation and pulsation of Portevin–Le Châtelier deformation bands: An experimental study with digital speckle pattern metrology, Int. J. Plast., 2005, vol. 21, no. 11, pp. 2150–2173. EDN: MHSTVR. DOI: https://doi.org/10.1016/j.ijplas.2005.03.017.
  9. Halim H., Wilkinson D. S., Niewczas M. The Portevin–Le Châtelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Mater., 2007, vol. 55, no. 12, pp. 4151–4160. EDN: MCXUYX. DOI: https://doi.org/10.1016/j.actamat.2007.03.007.
  10. Shibkov A. A., Zolotov A. E., Zheltov M. A., Denisov A. A. Morphological diagram of Savart–Masson bands of macrolocalized deformation, Crystallogr. Rep., 2012, vol. 57 1, pp. 105–111. EDN: PDJGMJ. DOI: https://doi.org/10.1134/S1063774511030308.
  11. Mehenni M., Ait-Amokhtar H., Fressengeas C. Spatiotemporal correlations in the Portevin–Le Châtelier band dynamics during the type B–type C transition, Mater. Sci. Eng. A., 2019, vol. 756, pp. 313–318. DOI: https://doi.org/10.1016/j.msea.2019.04.036.
  12. Russell B. Repeated yielding in tin bronze alloys, Phil. Mag. J. Theor. Exp. Appl. Phys., 1963, vol. 88, pp. 615–630. DOI: https://doi.org/10.1080/14786436308211160.
  13. Trusov P. V., Chechulina E. A. Methods and results of studying the Portevin–Le Châtelier effect: experiments and macrophenomenological model, PNRPU Mechanics Bulletin, 2023, no. 5, pp. 99–131 (In Russian). EDN: OUROEB. DOI: https://doi.org/10.15593/perm.mech/2023.5.09.
  14. Trusov P. V., Chechulina E. A. Serrated yielding: physical mechanisms, experimental dates, macrophenomenological models, PNRPU Mechanics Bulletin, 2014, no. 3, pp. 186–232 (In Russian). EDN: SXDTPL. DOI: https://doi.org/10.15593/perm.mech/2014.3.10.
  15. Trusov P. V., Chechulina E. A. Serrated yielding: crystal viscoplastic models, PNRPU Mechanics Bulletin, 2017, no. 1, pp. 134–163 (In Russian). EDN: YJTWCX. DOI: https://doi.org/10.15593/perm.mech/2017.1.09.
  16. Penning P. Mathematics of the Portevin–Le Châtelier effect, Acta Metall., 1972, vol. 20, no. 10, pp. 1169–1175. DOI: https://doi.org/10.1016/0001-6160(72)90165-4.
  17. Cottrell A. H., Jaswon M. A. Distribution of solute atoms round a slow dislocation, Proc. R. Soc., 1949, vol. 199, no. 1056, pp. 104–114. DOI: https://doi.org/10.1098/rspa.1949.0128.
  18. Kubin L. P., Estrin Y. The Portevin–Le Châtelier effect in deformation with constant stress rate, Acta Metall., 1985, vol. 33, pp. 397–407. DOI: https://doi.org/10.1016/0001-6160(85)90082-3.
  19. Kubin L. P., Estrin Y. Evolution of dislocation densities and the critical conditions for the Portevin–Le Châtelier effect, Acta Metall. Mater., 1990, vol. 38, no. 5, pp. 697–708. DOI: https://doi.org/10.1016/0956-7151(90)90021-8.
  20. McCormick P. G. Theory of flow localization due to dynamic strain ageing, Acta Metall., 1988, vol. 36, no. 12, pp. 3061–3067. DOI: https://doi.org/10.1016/0001-6160(88)90043-0.
  21. Estrin Y, McCormick P. G. Modelling the transient flow behaviour of dynamic strain ageing materials, Acta Metall. Mater., 1991, vol. 39, no. 12, pp. 2977–2983. DOI: https://doi.org/10.1016/0956-7151(91)90030-5.
  22. Ananthakrishna G., Valsakumar M. C. Repeated yield drop phenomenon: a temporal dissipative structure, J. Phys. D: Appl. Phys., 1982, vol. 15, no. 12, pp. 171–175. DOI: https://doi.org/10.1088/0022-3727/15/12/003.
  23. Mansouri L. Z., Coër J., Thuillier S., et al. Investigation of Portevin–Le Châtelier effect during Erichsen test, Int. J. Mater. Form., 2020, vol. 13, pp. 687–697. EDN: VZCJHC. DOI: https://doi.org/10.1007/s12289-019-01511-5.
  24. Ren S., Mazière M., Forest S., et al. A constitutive model accounting for strain ageing effects on work-hardening. Application to a C–Mn steel, Comptes Rendus. Mécanique, 2017, vol. 345, no. 12, pp. 908–921. EDN: YHDGGT. DOI: https://doi.org/10.1016/j.crme.2017.09.005.
  25. Lin Y. C., Yang H., He D.-G., Chen J. A physically-based model considering dislocation–solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures, Mater. Des., 2019, vol. 183, 108122. EDN: CGDZVX. DOI: https://doi.org/10.1016/j.matdes.2019.108122.
  26. Maziere M., Mortensen A., Forest S. Finite element simulation of the Portevin–Le Châtelier effect in highly reinforced metal matrix composites, Philos. Mag., 2021, vol. 101, no. 12, pp. 1471–1489. EDN: HESCJH. DOI: https://doi.org/10.1080/14786435.2021.1919331.
  27. Guillermin N., Besson J., Köster A., et al. Experimental and numerical analysis of the Portevin–Le Châtelier effect in a nickel-base superalloy for turbine disks application, Int. J. Solids Struct., 2023, vol. 264, 112076. EDN: LAALBS. DOI: https://doi.org/10.1016/j.ijsolstr.2022.112076.
  28. Mäkinen T., Ovaska M., Laurson L., Alava M. J. Portevin–Le Châtelier effect: modeling the deformation bands and stress-strain curves, J. Mater. Sci.: Mater. Theory, 2022, vol. 6, 15. EDN: PCWWIB. DOI: https://doi.org/10.1186/s41313-022-00044-w.
  29. Lebyodkin M., Brechet Y., Estrin Y., Kubin L. Statistical behaviour and strain localization patterns in the Portevin–Le Châtelier effect, Acta Mater., 1996, vol. 44, no. 11, pp. 4531–4541. EDN: LDXZJN. DOI: https://doi.org/10.1016/1359-6454(96)00076-6.
  30. Lebyodkin M. A., Dunin–Barkowskii L. R. Critical behavior and mechanism of strain correlations under conditions of unstable plastic flow, J. Exp. Theor. Phys., 1998, vol. 86, no. 5, pp. 993–1000. EDN: LESKIX. DOI: https://doi.org/10.1134/1.558571.
  31. Weiss J., Grasso J.-R., Miguel M.-C., et al. Complexity in dislocation dynamics: experiments, Mater. Sci. Eng. A, 2001, vol. 309–310, pp. 360–364. DOI: https://doi.org/10.1016/S0921-5093(00)01633-6.
  32. Brechet Y., Estrin Y. On the influence of precipitation on the Portevin–Le Châtelier effect, Acta Metall. Mater., 1995, vol. 43, no. 3, pp. 955–963. DOI: https://doi.org/10.1016/0956-7151(94)00334-e.
  33. Kreyca J., Kozeschnik E. State parameter-based constitutive modelling of stress strain curves in Al–Mg solid solutions, Int. J. Plast., 2018, vol. 103, pp. 67–80. DOI: https://doi.org/10.1016/j.ijplas.2018.01.001.
  34. Xu J., Holmedal B., Hopperstad O. S., et al. Dynamic strain ageing in an AlMg alloy at different strain rates and temperatures: Experiments and constitutive modelling, Int. J. Plast., 2022, vol. 151, 103215. DOI: https://doi.org/10.1016/j.ijplas.2022.103215.
  35. Follansbee P. S., Kocks U. F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall., 1988, vol. 36, no. 1, pp. 81–93. DOI: https://doi.org/10.1016/0001-6160(88)90030-2.
  36. Zhao Y., Marian J. Direct prediction of the solute softening-to-hardening transition in W–Re alloys using stochastic simulations of screw dislocation motion, Modelling Simul. Mater. Sci. Eng., 2018, vol. 26, no. 4, 045002. DOI: https://doi.org/10.1088/1361-651X/aaaecf.
  37. Zhao Y., Dezerald L., Marian J. Electronic structure calculations of oxygen atom transport energetics in the presence of screw dislocations in tungsten, Metals, 2019, vol. 9, no. 2, pp. 252. DOI: https://doi.org/10.3390/met9020252.
  38. Zhao Y., Dezerald L., Pozuelo M., et al. Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales, Nat. Commun., 2020, vol. 11, 1227. EDN: JQHANB. DOI: https://doi.org/10.1038/s41467-020-15085-3.
  39. Trusov P. V., Shveykin A. I. Mnogourovnevyye modeli mono- i polikristallicheskikh materialov: teoriya, algoritmy, primery primeneniya [Multiscale Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples]. Novosibirsk, Publ. House of SB RAS, 2019, 605 pp. (In Russian). DOI: https://doi.org/10.15372/multilevel2019tpv.
  40. Trusov P. V., Gerasimov R. M. Methods and results of the Portevin–Le Châtelier effect study: Physically oriented continuum and multilevel models, PNRPU Mechanics Bulletin, 2023, no. 5, pp. 132–158 (In Russian). EDN: CMPXGG. DOI: https://doi.org/10.15593/perm.mech/2023.5.10.
  41. Lebyodkin M., Brechet Y., Estrin Y., Kubin L. P. Dynamic strain ageing and stick-slip instabilities: A parallel approach and statistical study, Solid State Phenom., 1995, vol. 42–43, pp. 313–324. DOI: https://doi.org/10.4028/www.scientific.net/SSP.42-43.313.
  42. Lebyodkin M. A., Kobelev N. P., Bougherira Y., et al. On the similarity of plastic flow processes during smooth and jerky flow: Statistical analysis, Acta Mater., 2012, vol. 60, pp. 3729–3740. EDN: PDOAED. DOI: https://doi.org/10.1016/j.actamat.2012.03.026.
  43. Trusov P. V., Chechulina E. A., Gerasimov R. M., et al. Using the wavelet transform to process data from experimental studies of the discontinuous plastic deformation effect, Fract. Struct. Integr., 2024, vol. 68, pp. 159–174. EDN: QQSTVH. DOI: https://doi.org/10.3221/igf-esis.68.10.
  44. D’yakonov V. P. Veyvlety. Ot teorii k praktike [Wavelets. From Theory to Practice]. Moscow, Solon-Press, 2010, 399 pp. (In Russian). EDN: ZUWWCX.
  45. Petukhov B. V. Hardening of crystals caused by the dynamic aging of dislocations, Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 813–818. EDN: LHZMKJ. DOI: https://doi.org/10.1134/1.1612600.
  46. Dekker K., Verwer J. G. Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monographs, vol. 2. Amsterdam, North-Holland, 1984, ix+307 pp.
  47. Steuer R. E. Multiple Criteria Optimization: Theory, Computation, and Application. Malabar, FL, Robert E. Krieger Publ., 1989, xxii+546 pp.
  48. Ait-Amokhtar H., Fressengeas C., Bouabdallah K. On the effects of the Mg content on the critical strain for the jerky flow of Al–Mg alloys, Mat. Sci. Eng. A, 2015, vol. 631, pp. 209–213. EDN: UWCHNZ. DOI: https://doi.org/10.1016/j.msea.2015.02.055.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Frequency polygons of stress jumps (X-axis — normalized jumps, Y-axis — number of jumps in the sample) in modes: a) C ($2 \cdot 10^{-5}$ s$^{-1}$), b) B ($2 \cdot 10^{-4}$ s$^{-1}$), c) A ($6 \cdot 10^{-3}$ s$^{-1}$) [42]

Download (153KB)
3. Figure 2. Structural scheme of the model

Download (59KB)
4. Figure 3. Model identification results: a) stress-strain diagrams; b) frequency polygons (1 — experimental data; 2 — simulation results)

Download (160KB)
5. Figure 4. Model verification results: a) stress-strain diagrams; b) frequency polygons (1 — experimental data, 2 — simulation results)

Download (173KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».