Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method


Cite item

Full Text

Abstract

The analytical method for nonlinear stochastic creep problem solving for a plane stressed state was developed. Stochasticity was introduced into the determinative creep equation, which was taken in accordance with the nonlinear theory of viscous flow, through a homogeneous random function of coordinates. The problem was solved on the basis of the second approximation for small parameter method in stress tensor components. The main statistical characteristics of the random stress field were calculated. The analysis of the results in the first and second approximations was obtained.

About the authors

Nikolay N Popov

Samara State Technical University

Email: ponick25@gmail.com
к.ф.-м.н., доц., доцент, каф. прикладной математики и информатики; Самарский государственный технический университет; Samara State Technical University

Olga O Chernova

Samara State Technical University

Email: chernova_olga@citydom.ru
аспирант, каф. прикладной математики и информатики; Самарский государственный технический университет; Samara State Technical University

References

  1. Ломакин В. А. Статистические задачи механики твердых деформируемых тел. М.: Наука, 1970. 137 с.
  2. Ломакин В. А. Проблемы механики структурно-неоднородных тел // Изв. АН СССР. МТТ, 1978. № 6. С. 45-52.
  3. Кузнецов В. А. Ползучесть стохастически неоднородных сред в условиях плоского напряженного состояния / В сб.: Математическая физика: Сб. научн. трудов. Куйбышев: КПтИ, 1977. С. 69-74.
  4. Попов Н. Н., Самарин Ю. П. Исследование полей напряжений вблизи границы стохастически неоднородной полуплоскости при ползучести // ПМТФ, 1988. № 1. С. 159-164.
  5. Радченко В. П., Попов Н. Н. Статистические характеристики полей напряжений и деформаций при установившейся ползучести стохастически неоднородной плоскости // Изв. вузов. Машиностроение, 2006. № 2. С. 3-11.
  6. Коваленко Л. В., Попов Н. Н., Радченко В. П. Решение плоской стохастической краевой задачи ползучести // ПММ, 2009. Т. 73, № 6. С. 1009-1016.
  7. Попов Н. Н., Забелин С. А. Решение нелинейной стохастической задачи ползучести методом малого параметра при плоском напряженном состоянии // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2006. № 43. С. 106-112.
  8. Попов Н. Н., Коваленко Л. В., Яшин М. А. Решение плоской нелинейной стохастической задачи ползучести методом спектральных представлений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2009. № 2(19). С. 99-106.
  9. Вентцель Е. С., Овчаров Л. А. Прикладные задачи теории вероятностей. М.: Радио и связь, 1983. 416 с.
  10. Пугачев В. С. Теория вероятностей и математическая статистика. М.: Физматлит, 2002. 496 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».