Numerical study of the influence of surface defects on the stability of a cylindrical pipe containing fluid


Cite item

Full Text

Abstract

This paper is concerned with the dynamic behavior of an elastic cylindrical pipe with surface defects interacting with the internal flow of a compressible fluid. A defect in the form of a ring of rectangular cross-section is located on the inner or outer surface of an elastic body and characterized by its own set of physico-mechanical parameters. The behavior of an ideal compressible fluid is described using the potential theory, and the behavior of the pipe is considered in the framework of the linear theory of elasticity. The hydrodynamic pressure exerted by the fluid on the inner surface of the pipe (defect) is determined with the use of the Bernoulli equation. A mathematical formulation of the problem of the elastic body dynamics is based on the variational principle of virtual displacements, and the system of equations for a liquid medium is developed using the Bubnov-Galerkin method. For the numerical implementation of the algorithm, a semi-analytic version of the finite element method is used. The stability of the system is estimated based on the results of computation and analysis of complex eigenvalues for a coupled system of equations. Verification of the model is carried out for the case of an ideal pipe by comparing the obtained results with the known experimental and numerical data. The effect of the geometric and physicomechanical parameters of the defect on the critical fluid velocity responsible for the loss of stability is studied for a cylindrical pipe clamped at both ends. It is shown that defects reduce the boundary of hydroelastic stability. It has been found that the defect located on the outer surface of the pipe exerts a greater impact on the system stability than it does when located on the wetted surface of the pipe.

About the authors

Sergey A Bochkarev

Institute of Continuous Media Mechanics UB RAS

Email: bochkarev@icmm.ru
Cand. Phys. & Math. Sci.; Senior Researcher; Dept. of Complex Problems of Mechanics of Deformable Bodies 1, Academician Korolev Street, Perm, 614013, Russian Federation

Sergey V Lekomtsev

Institute of Continuous Media Mechanics UB RAS

Email: lekomtsev@icmm.ru
Cand. Phys. & Math. Sci.; Researcher; Dept. of Complex Problems of Mechanics of Deformable Bodies 1, Academician Korolev Street, Perm, 614013, Russian Federation

Aleksander N Senin

Institute of Continuous Media Mechanics UB RAS

Email: senin.a@icmm.ru
Postgraduate Student; Dept. of Complex Problems of Mechanics of Deformable Bodies 1, Academician Korolev Street, Perm, 614013, Russian Federation

References

  1. Li X., Bai Y., Su C., Li M. Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline // Int. J. Pres. Ves. Pip., 2016. vol. 138. pp. 8-18. doi: 10.1016/j.ijpvp.2016.01.002.
  2. Silva R. C. C., Guerreiro J. N. C., Loula A. F. D. A study of pipe interacting corrosion defects using the FEM and neural networks // Adv. Eng. Softw., 2007. vol. 38, no. 11-12. pp. 868-875. doi: 10.1016/j.advengsoft.2006.08.047.
  3. Khalajestani M. K., Bahaari M. R. Investigation of pressurized elbows containing interacting corrosion defects // Int. J. Pres. Ves. Pip., 2014. vol. 123. pp. 77-85. doi: 10.1016/j.ijpvp.2014.08.002.
  4. Ouglova A., Berthaud Y., François M., Foct F. Mechanical properties of an iron oxide formed by corrosion in reinforced concrete structures // Corrosion Sci., 2006. vol. 48, no. 12. pp. 3988-4000. doi: 10.1016/j.corsci.2006.03.007.
  5. Vanaei H. R., Eslami A., Egbewande A. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models // Int. J. Pres. Ves. Pip., 2017. vol. pp. 43-54. doi: 10.1016/j.ijpvp.2016.11.007.
  6. Xu L., Cheng Y. F. A finite element based model for prediction of corrosion defect growth on pipelines // Int. J. Pres. Ves. Pip., 2017. vol. 153. pp. 70-79. doi: 10.1016/j.ijpvp.2017.05.002.
  7. Benjamin A. C., Freire J. L. F., Vieira R. D., Cunha D. J. S. Interaction of corrosion defects in pipelines - Part 1: Fundamentals // Int. J. Pres. Ves. Pip., 2016. vol. 144. pp. 56-62. doi: 10.1016/j.ijpvp.2016.05.007.
  8. Shariati M., Rokhi M. M. Buckling of steel cylindrical shells with an elliptical cutout // Int. J. Steel Struct., 2010. vol. 10, no. 2. pp. 193-205. doi: 10.1007/BF03215830.
  9. Сухинин С. Н., Шиврин М. В. Исследование устойчивости при осевом сжатии многослойных композитных цилиндрических оболочек с локальными дефектами // Конструкции из композиционных материалов, 2014. № 1. С. 3-7.
  10. Lykhachova O. Numerical simulation of axially compressed cylindrical shells with circular cutouts // Mechanics Mechanical Eng., 2016. vol. 20, no. 3. pp. 309-321, Available at http: //kdm.p.lodz.pl/articles/2016/20_3_9L.pdf (July 24, 2018).
  11. Jiao P., Chen Z., Xu F., Tang X., Su W. Effects of ringed stiffener on the buckling behavior of cylindrical shells with cutout under axial compression: Experimental and numerical investigation // Thin Wall. Struct., 2018. vol. 123. pp. 232-243. doi: 10.1016/j.tws.2017.11.013.
  12. Wang L., Ni Q. Vibration of slender structures subjected to axial flow or axially towed in quiescent fluid // Adv. Acoust. Vib., 2009. vol. 2009, 432340. doi: 10.1155/2009/432340.
  13. Païdoussis M. P. Slender Structures and Axial Flow. vol. 1 / Fluid-structure Interactions. London: Academic Press, 2014. 888 pp.; doi: 10.1016/s1874-5652(98)x8001-4.
  14. Païdoussis M. P. Slender Structures and Axial Flow. vol. 2 / Fluid-structure Interactions. London: Academic Press, 2016. 942 pp.; doi: 10.1016/s1874-5652(04)x8001-7.
  15. Zhang Y. L., Reese J. M., Gorman D. G. Finite element analysis of the vibratory characteristics of cylindrical shells conveying fluid // Comp. Methods Appl. Mech. Eng., 2002. vol. 191. pp. 5207-5231. doi: 10.1016/S0045-7825(02)00456-5.
  16. Zhang Y. L., Reese J. M., Gorman D. G. Initially-tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis // J. Fluid. Struct., 2002. vol. 16, no. 1. pp. 53-70. doi: 10.1006/jfls.2001.0409.
  17. Zhang Y. L., Reese J. M., Gorman D. G. A comparative study of axisymmetric finite elements for the vibration of thin cylindrical shells conveying fluid // Int. J. Numer. Meth. Eng., 2002. vol. 54, no. 1. pp. 89-110. doi: 10.1002/nme.418.
  18. Uğurlu B., Ergin A. A hydroelasticity method for vibrating structures containing and/or submerged in flowing fluid // J. Sound Vib., 2006. vol. 290, no. 3-5. pp. 572-596. doi: 10.1016/j.jsv.2005.04.028.
  19. Uğurlu B., Ergin A. A hydroelastic investigation of circular cylindrical shells-containing flowing fluid with different end conditions // J. Sound Vib., 2008. vol. 318, no. 4-5. pp. 1291-1312. doi: 10.1016/j.jsv.2008.05.006.
  20. Uğurlu B., Ergin A. The dynamics and stability of circular cylindrical shells containing and submerged in flowing fluid using a higher order boundary element method // P. I. Mech. Eng. M.-J. Eng., 2009. vol. 223, no. 4. pp. 489-502. doi: 10.1243/14750902JEME168.
  21. Firouz-Abadi R. D., Noorian M. A., Haddadpour H. A fluid-structure interaction model for stability analysis of shells conveying fluid // J. Fluid. Struct., 2010. vol. 26, no. 5. pp. 747-763. doi: 10.1016/j.jfluidstructs.2010.04.003.
  22. Бочкарев С. А., Лекомцев С. В. Численное моделирование упругой трубы с текущей жидкостью // Вестник ПНИПУ. Механика, 2011. № 3. С. 5-14.
  23. Timoshenko S. P., Goodier J. N. Theory of elasticity. New York: McGraw-Hill, 1970. xxiv+567 pp.
  24. Ильгамов М. А. Колебания упругих оболочек, содержащих жидкость и газ. М.: Наука, 1969. 182 с.
  25. Бочкарев С. А., Матвеенко В. П. Численное исследование влияния граничных условий на динамику поведения цилиндрической оболочки с протекающей жидкостью // Изв. РАН. МТТ, 2008. Т. 43, № 3. С. 189-199.
  26. Zienkiewicz O. C. The finite element method in engineering science. London: McGraw Hill, 1971. 521 pp.
  27. Païdoussis M. P., Denise J.-P. Flutter of thin cylindrical shells conveying fluid // J. Sound Vib., 1972. vol. 20. pp. 9-26. doi: 10.1016/0022-460X(72)90758-4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».