Complex bending and initial destruction of hybrid timber beams


Cite item

Full Text

Abstract

A mathematical model of the deformation of hybrid timber beams has been developed. By hybrid we mean bars, formed by rigid connection (gluing) on certain contact surfaces of a set of layers of different forms of crosssections and different types of timber. In general, the bars are in conditions of complex bending with stretching-compression. The physical non-linearity of timber, as well as the different tensile and compression resistance, is taken into account. In the general case, the problem reduces either to solving a system of three nonlinear algebraic equations of the third degree with respect to generalized deformations of the cross section or to a system of three nonlinear ordinary differential equations with respect to the components of the displacement vector of the points of the axis of the rod. To solve the obtained algebraic equations the Newton method is used, the solution of the differential equations is performed using the Galerkin type method. An analytical approximation of the experimental tension-compression diagrams of timber along the fibers in the form of polynomials of the second and third degree is proposed. The coefficients of the approximating functions are determined in two ways: using the least squares method with the experimental deformation diagrams; by imposing certain requirements on the diagrams, using the basic mechanical characteristics of the timber (maximum stresses and deformations, moduli of elasticity). Numerical values of the approximation coefficients for 15 different types of timber are given. The above examples of calculations of hybrid timber beams have shown the possibility of the emergence of hidden mechanisms of destruction, as well as the strong influence of the rearrangement of layer materials on the stress-strain state of the structure. The method developed in the article for the calculation of hybrid rodshaped timber structures offers great opportunities for solving optimization problems in the design, and allows rational use of various types of timber.

About the authors

Yuriy V Nemirovsky

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: nemirov@itam.nsc.ru
http://orcid.org/0000-0002-4281-4358 Dr. Phys. & Math. Sci., Professor; Chief Researcher; Lab. of Fast Processes Physics 4/1, Institutskaya st., Novosibirsk, 630090, Russian Federation

Artem I Boltaev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: boltaev_artem@mail.ru
http://orcid.org/0000-0003-1317-9903 Postgraduate Student; Lab. of Fast Processes Physics 4/1, Institutskaya st., Novosibirsk, 630090, Russian Federation

References

  1. Арленинов Д. К., Буслаев Ю. Н., Игнатьев В. П., Романов П. Г., Чахов Д. К. Конструкции из дерева и пластмасс. М.: АСВ, 2002. 280 с.
  2. Шмидт А. Б., Дмитриев А. П. Атлас строительных конструкций из клееной древесины и водостойкой фанеры. М.: АСВ, 2002. 292 с.
  3. Porteous J., Kermani A. Structural timber design to Eurocode 5. United Kingdom: John Wiley & Sons, 2013. xii+542 pp. doi: 10.1002/9780470697818.
  4. Pischl R., Schickhofer G. The Mur River wooden bridge, Austria // Structural Engineering International, 1993. vol. 3, no. 4. pp. 217-219. doi: 10.2749/101686693780607660.
  5. Poirier E., Moudgil M., Fallahi A., Staub-French S., Tannert T. Design and construction of a 53-meter-tall timber building at the university of British Columbia / Proc. of WCTE’22016 (Vienna, Austria, August 22-25, 2016), 2016. 10 pp., Retrieved from http://www.proholz.at/fileadmin/proholz/media/documents/Thomas-Tannert.pdf (December 06, 2017).
  6. Стоянов В. В., Окунь И. В. Усиление балочных конструкций методом послойного армирования // Изв. вузов. Строительство, 2013. № 11-12. С. 44-47.
  7. Немировский Ю. В., Болтаев А. И. Особенности расчета деревожелезобетонного балочного моста // Вестник СибАДИ, 2016. № 5. С. 114-124.
  8. Коченов В. М. Несущая способность элементов и соединений деревянных конструкций. М.: Госстройиздат, 1953. 320 с.
  9. Деревянные конструкции: СП 64.13330.2011. Свод правил. Актуализированная редакция СНиП II-25-80. Введ. 20.05.2011. М., 2011. 92 с.
  10. Ржаницын А. Р. Изгиб и сложное сопротивление прямоугольного сечения стержня при произвольной диаграмме работы материала / Расчет тонкостенных пространственных конструкций: Сб. статей под ред. А. Р. Ржаницына. М., 1964. С. 7-22.
  11. Геммерлинг А. В. Расчет стержневых систем. М.: Стройиздат, 1974. 208 с.
  12. Лукаш А. П. Основы нелинейной строительной механики. М.: Стройиздат, 1978. 204 с.
  13. Шапиро Д. М., Агарков А. В., Мельничук Н. Н., Чан Тхи Тхюи Ван Нелинейные методы расчета в современном проектировании // Научный журнал строительства и архитектуры, 2009. № 3. С. 85-94.
  14. Owen D. R., Hinton E. Finite elements in plasticity: Theory and Practice. Swansea: John Wiley & Sons, 2013. 640 pp.
  15. McGuire W., Gallagher R. H., Ziemian R. D. Matrix structural analysis. New York: John Wiley & Sons, 2014. xvii+460 pp.
  16. Исследование прочности и деформативности древесины: Сб. статей / ред. Г. Г. Карлсен. М.: Госстройиздат, 1956. 172 с.
  17. Быков В. В. Экспериментальные исследования прочности и деформативности древесины сибирской лиственницы при сжатии и растяжении вдоль волокон с учетом длительного действия нагрузки // Изв. вузов. Строительство, 1967. № 8. С. 3-8.
  18. Квасников Е. Н. Вопросы длительного сопротивления древесины. Л.: Стройиздат, 1972. 96 с.
  19. Боровиков А. М., Чибисова Г. А., Кот Л. В. Древесина. Показатели физико-механических свойств малых чистых образцов: ГСССД 69-84. Таблицы стандартных справочных данных. Введ. 01.06.1985. Минск: Госстандарт СССР, 1985. 29 с.
  20. Немировский Ю. В. Расчет и рациональное проектирование деревянных стержневых элементов / Современные проблемы совершенствования и развития конструкций в строительстве и транспорте: Сб. научных трудов III Междунар. научно-технич. конференции. Самара: СамГАСУ, 2005. С. 247-251.
  21. Немировский Ю. В. Метод расчета композитных стрежневых систем из разномодульных материалов / Фундаментальные и прикладные проблемы современной механики: Материалы V Всероссийской научной конференции. Томск, 2006. С. 288-290.
  22. Немировский Ю. В., Болтаев А. И. Влияние формы и расположения слоев на напряженно-деформированное состояние гибридных деревянных балок // Вестник БГТУ им. В. Г. Шухова, 2017. Т. 2, № 10. С. 73-83. doi: 10.12737/article_59cd0c5b5b1678.28291672.
  23. Филин А. П. Прикладная механика твердого деформируемого тела. Т. 2. М.: Наука, 1978. 616 с.
  24. Немировский Ю. В., Болтаев А. И. Особенности деформирования и разрушения деревянных клееных многопролетных балок. Сообщение 1 // Изв. вузов. Строительство, 2016. № 6. С. 116-126.
  25. Ortega J. M., Rheinboldt W. C. Chapter 7 - General Iterative Methods / Iterative solution of nonlinear equations in several variables. New York: Academic Press, 1970. pp. 181-239. doi: 10.1016/B978-0-12-528550-6.50018-1.
  26. Gill P. E., Murray W., Wright M. H. 8.2.3. Termination Criteria / Practical optimization. London: Academic Press, 1981. pp. 305-310.
  27. Fletcher C. A. J. Computational Galerkin Methods / Computational Galerkin Methods / Springer Series in Computational Physics. Berlin, Heidelberg: Springer, 1984. pp. 72-85. doi: 10.1007/978-3-642-85949-6_2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».