Globalization of the analysis of particle placement models by cells

Cover Page

Cite item

Full Text

Abstract

The title of the paper means that its goal is a general approach to the pre-asmptotic analysis of schemes with different qualities in all combinations of their distinguishability of their constituent elements (cells and particles). To do this, in each group of such schemes with general restrictions, instead of directly studying them based on the specificity of each scheme, a certain general set of algorithmic procedures for recalculating the results of their pre-asymptotic analysis in the scheme is proposed, starting with the scheme with the greatest differentiation of their outcomes, sequentially for other schemes of the group with differences as one item. The analysis of each scheme is carried out according to the traditional and in a number of new following directions: constructing a random process of formation and numbered non-repeated enumeration of the outcomes of the scheme in the order of their receipt, finding their number, solving the numbering problem for the outcomes of the scheme, which consists in establishing a one-to-one correspondence between their types and numbers, setting their probabilistic distribution and modeling the outcomes of the scheme with this probabilistic distribution.

In particular, the cases of groups of schemes without restrictions on the placement of particles and with a restriction of at most one particle in a cell are studied separately, which lead to some well-known analytical results. Under any restrictions in the considered group of circuits, their analysis is carried out by implementing algorithmic procedures for sequential transformation of the results of the analysis of one circuit of the group for another. Combinations into such pairs of schemes are made on the basis of the difference in the quality of one of their elements.

About the authors

Nataliya Yu. Enatskaya

National Research University “Higher School of Economics”,
Moscow Institute of Electronics and Mathematics

Author for correspondence.
Email: nat1943@mail.ru
ORCID iD: 0000-0003-1241-7543
SPIN-code: 9706-9900
Scopus Author ID: 6504731611
ResearcherId: L-6102-2015
http://www.mathnet.ru/person28100

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Applied Mathematics

34, Tallinskay st, Moscow, 123458, Russian Federation

References

  1. Vilenkin N. Ya. Combinatorics. New York, Academic Press, 1971, xiii+296 pp.
  2. Riordan J. An Introduction to Combinatorial Analysis, Wiley Publicatlon in Mathematical Statistics. New York, John Wiley and Sons, 1958, x+244 pp.
  3. Sachkov V. N. Combinatorial Methods in Discrete Mathematics, Encyclopedia of Mathematics and its Applications, vol. 55. Cambridge, Cambridge Univ. Press, 1996, xiii+306 pp. https://doi.org/10.1017/cbo9780511666186
  4. Sachkov V. N. Probabilistic Methods in Combinatorial Analysis, Encyclopedia of Mathematics and its Applications, vol. 56. Cambridge, Cambridge Univ. Press, 1997, x+246 pp. https://doi.org/10.1017/CBO9780511666193
  5. Hall M. Combinatorial Theory, Wiley Classics Library. John Wiley and Sons, 1998, xviii+440 pp.
  6. Ryser H. J. Combinatorial Mathematics, The Carus Mathematical Monographs, vol. 14. New York, John Wiley and Sons, 1963, xiv+154 pp.
  7. Rybnikov K. A. Vvedenie v kombinatornyi analiz [Introduction to Combinatorial Analysis]. Moscow, Moscow State Univ., 1985, 312 pp. (In Russian)
  8. Kolchin V. F., Sevast’yanov B. A., Chistyakov V. P. Random Allocations, Scripta Series in Mathematics. New York, John Wiley and Sons, 1978, xi+262 pp.
  9. Goulden I. P. Jackon D. M. Combinatorial Enumeration. Mineola, NY, Dover Publ., 2004, xxvi+569 pp.
  10. Enatskaya N. Yu. Probabilistic models of combinatorial schemes, Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming and Computer Software, 2020, vol. 13, no. 3, pp. 103–111 (In Russian). https://doi.org/10.14529/mmp200312
  11. Enatskaya N. Yu. Analysis of combinatorial schemes in the pre-asymptotic region of parameter change, Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2018, no. 7, pp. 117–133 (In Russian). https://doi.org/10.17076/mat750
  12. Enatskaya N. Yu. Combinatorial analysis of the scheme of allocation of distinguishable particles into distinguishable cells without empty cells, Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2020, no. 7, pp. 120–126 (In Russian). https://doi.org/10.17076/mat1172

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».