Динамическая термоустойчивость геометрически нерегулярной пологой цилиндрической оболочки под действием периодической, по временной координате, нагрузки

Обложка

Цитировать

Полный текст

Аннотация

В рамках модели типа Лява рассматривается геометрически нерегулярная изотропная пологая цилиндрическая оболочка (ГНО). За основу берется строгая континуальная модель «оболочка–ребра». Предполагается, что ГНО нагрета до постоянной температуры $\theta_0$, два противоположных края подвергаются воздействию периодической по временной координате тангенциальной нагрузке, амплитуда и частота которой известны ($p(t)=p_0 \cos \vartheta t$). Задача определения динамической неустойчивости (ДН) термоупругой системы сводится к рассмотрению сингулярной системы трех дифференциальных уравнений динамической термоустойчивости ГНО в перемещениях, содержащих слагаемые с тангенциальными усилиями в форме Брайена. Эти усилия, возникающие в оболочке при ее нагреве, предварительно определяются на основе замкнутых решений сингулярной системы дифференциальных уравнений безмоментной термоупругости ГНО. Конкретизированная исходная система уравнений преобразуется к уравнениям Матье, которые записаны в терминах классической атермической теории гладких пластин, содержащих поправки на геометрические параметры — кривизну, относительную высоту подкрепляющих элементов, их число и температуру. Определяются первые три области ДН ГНО. Проводится количественный анализ влияния геометрических параметров упругой системы и температуры на конфигурацию областей ДН и предельного значения коэффициента возбуждения.

Об авторах

Григорий Николаевич Белосточный

Саратовский государственный университет им. Н. Г. Чернышевского, механико-математический факультет

Email: belostochny@mail.ru
доктор технических наук, профессор

Ольга Анатольевна Мыльцина

Саратовский государственный университет им. Н. Г. Чернышевского, механико-математический факультет

Email: omyltcina@yandex.ru
кандидат физико-математических наук, без звания

Список литературы

  1. Жилин П. А., "Линейная теория ребристых оболочек", Изв. АН СССР. МТТ, 1970, № 4, 150–162
  2. Белосточный Г. Н., Ульянова О. И., "Континуальная модель композиции из оболочек вращения с термочувствительной толщиной", Изв. РАН. МТТ, 2011, № 2, 32-40
  3. Белосточный Г. Н., Русина Е. А., "Оболочки и геометрически нерегулярные пластинки с термочувствительной толщиной", Докл. Росс. акад. естеств. наук, 1999, № 1, 28-37
  4. Абовский Н.П., "О вариационных уравнения для гибких ребристых и других конструктивно-анизотропных пологих оболочек", Теория пластин и оболочек, Наука, М., 1971, 4-7
  5. Назаров А. А., Основы теории и методы расчета пологих оболочек, Стройиздат, Л., М., 1966
  6. Antosik P., Mikusinski J., Sikorski R., Theory of Distributions: The Sequential Approach, Elsevier Scientific, Amsterdam, 1973
  7. Рассудов В. М., "Деформации пологих оболочек, подкрепленных ребрами жесткости", Учен. зап. Сарат. ун-та, 52 (1956), 51-91
  8. Геккелер И.В., Статика упругого тела, Гостехиздат, Л., М., 1934
  9. Огибалов П. М., Вопросы динамики и устойчивости оболочек, МГУ, М., 1963
  10. Огибалов П. М., Грибанов В. Ф., Термоустойчивость пластин и оболочек, МГУ, М., 1958
  11. Белосточный Г.Н., "Аналитические методы определения замкнутых интегралов сингулярных дифференциальных уравнений термоупругости геометрически нерегулярных оболочек", Доклады Академии военных наук, 1999, № 1, 14-25
  12. Белосточный Г. Н., Русина Е. А., "Динамическая термоустойчивость трансверсально-изотропных пластин под действием периодических нагрузок", Современные проблемы нелинейной механики конструкций, взаимодействующих с агрессивными средами, Сб. науч. тр. межвуз. науч. конф., Саратов, 2000, 175-180
  13. Белосточный Г. Н., Цветкова О. А., "Геометрически нерегулярные пластинки под действием периодического по времени температурного поля", Проблемы прочности элементов конструкций под действием нагрузок и рабочих сред, Сарат. гос. техн. ун-т, Саратов, 2002, 64-72 с.
  14. Мыльцина О. А., Полиенко А. В., Белосточный Г. Н., "Динамическая устойчивость нагретых геометрически нерегулярных пластин на основе модели Рейснера", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 21:4 (2017), 760-772
  15. Stoker J. J., Nonlinear Vibrations in Mechanical and Electrical Systems, Wiley Classics Library, Wiley, New York, 1992
  16. Болотин В. В., Динамическая устойчивость упругих систем, ГИТТЛ, М., 1956
  17. Timoshenko S. P., Vibration Problems in Engineering, Constable, London, 1937
  18. Филиппов А. П., Методы расчета сооружений на колебания, Госстройиздат, М., Л., 1941
  19. Тимошенко С. П., Устойчивость упругих систем, ОГИЗ–Гостехизд, М., Л., 1946
  20. Амбарцумян С. А., Теория анизотропных пластин, Наука, М., 1967

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Авторы, Самарский государственный технический университет, 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».