Течение Куэтта горячего вязкого газа

ТОМ 24, №2 (2020)

Цитировать

Полный текст

Аннотация

Найдено новое точное решение уравнений движения вязкого газа для плоского стационарного сдвигового течения горячего (800–1500 K) газа между движущимися с разными скоростями параллельными пластинами (аналог несжимаемого течения Куэтта). Одна из пластин считалась теплоизолированной. Для зависимости коэффициента вязкости от температуры принята формула Сазерленда. В отличие от других известных точных решений, вместо аналогии Рейнольдса (предположение о линейной связи между коэффициентами вязкости и теплопроводности) для вычисления коэффициента теплопроводности использована более точная формула, имеющая в рассматриваемом диапазоне температур ту же точность, что и формула Сазерленда (2 %). С использованием полученного точного решения исследовано качественное влияние сжимаемости на напряжение трения и на профили температуры и скорости. Показано, что (если одна из пластин теплоизолирована) сжимаемость газа приводит к увеличению напряжения трения. Проведено сравнение нового точного решения с известным точным решением (V. N. Golubkin, G. B. Sizykh, 2018), полученным с использованием формулы Сазерленда для коэффициента вязкости и аналогии Рейнольдса для коэффициента теплопроводности. Обнаружено, что оба решения приводят к одинаковым выводам о качественном влиянии сжимаемости на напряжение трения и на профили температуры и скорости. Однако прирост напряжения трения, вызванный сжимаемостью, при использовании аналогии Рейнольдса оказался недооцененным в два раза. Это показывает, что предположение о линейной связи между коэффициентами вязкости и теплопроводности может приводить к заметным количественным ошибкам.

Об авторах

Александр Николаевич Хорин

Московский физико-технический институт (национальный исследовательский университет)

без ученой степени, без звания

Анастасия Анатольевна Конюхова

Московский физико-технический институт (национальный исследовательский университет)

без ученой степени, без звания

Список литературы

  1. Couette M., "Etudes sur le frottement des liquides", Ann. Chim. Phys., Ser. 6, 21 (1890), 433-510
  2. Schlichting H., Gersten K., Grenzschicht-Theorie, Springer-Verlag, Berlin, 2006
  3. Лойцянский Л. Г., Механика жидкости и газа, Гостехиздат, М.-Л., 1950
  4. White F., Viscous Fluid Flow, Mcgraw-Hill Series in Mechanical Engineering Book Series, McGraw Hill, New York, 2006
  5. Кочин Н. Е., Кибель И. А., Розе Н. В., Теоретическая гидромеханика. Ч. II., Физматлит, М., 1963
  6. Гродзовский Г. Л., "Течение вязкого газа между двумя движущимися параллельными стенками и между двумя вращающимися цилиндрами", ПММ, 19:1 (1955), 99-102
  7. Жмулин Е. М., "Течение вязкого газа между двумя движущимися параллельными пластинами", Уч. записки ЦАГИ, 2:4 (1971), 31-37
  8. Rogers G. F. C., Mayhew Y. R., Thermodynamic and Transport Properties of Fluids: S.I. Units, Blackwell, Malden, USA, 1995
  9. Голубкин В. Н., Сизых Г. Б., "О сжимаемом течении Куэтта", Уч. записки ЦАГИ, 49:1 (2018), 27-38
  10. Брутян М. А., Крапивский П. Л., "Точные решения стационарных уравнений Навье-Стокса вязкого теплопроводного газа для плоской струи из линейного источника", ПММ, 82:5 (2018), 644-656
  11. Брутян М. А., Ибрагимов У. Г., "Автомодельные и неавтомодельные течения вязкого газа, истекающего из вершины конуса", Труды МФТИ, 10:4 (2018), 113-121
  12. Bosnyakov S., Mikhaylov S. V., Morozov A. N., et al., "Implementation of high-order discontinuous Galerkin method for solution of practical tasks in external aerodynamics and aeroacoustics", N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.), IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128, Springer, Cham, 2015, 337-379
  13. Bosnyakov S., Mikhaylov S. V., Podaruev V. Yu., et al., "Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores", 23rd AIAA Computational Fluid Dynamics Conference (AIAA Aviation 2017, USA, Denver, Colorado, 5-9 June 2017), 2017, 2017-3943
  14. Егоров И. В., Новиков А. В., "Прямое численное моделирование ламинарно-турбулентного обтекания плоской пластины при гиперзвуковых скоростях потока", Ж. вычисл. матем. и матем. физ., 56:6 (2016), 1064-1081
  15. Егоров И. В., Пальчековская Н. В., Шведченко В. В., "Влияние пространственных возмущений сверхзвукового потока на тепловой поток к поверхности затупленных тел", ТВТ, 53:5 (2015), 713-726
  16. Голубкин В. Н., Сизых Г. Б., "Течение вязкого газа между вертикальными стенками", ПММ, 82:5 (2018), 657-667

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».