On defining relations for the Hencky environment of softening of the material under diagonal stress tensor


Cite item

Abstract

Medium which strains are described by diagonal components of the strain tensor is considered (in spherical coordinate system). It is assumed that the first invariant of the strain tensor is not positive. Under these restrictions Hencky defining relations with regard to softening of material are written. These defining relations are represented as map of strain space in the stress space. Jacobi matrix of this map is singular in some points in strain space. It is shown that using this map it is possible to find the objective number of deformed states corresponding to a given strain tensor. Also the equations of incremental plasticity law are written. These equations allow us to find the inelastic strain by the total strain.

About the authors

Valery V Struzhanov

Institute of Engineering Science, Ural Branch of RAS

Email: stru@imach.uran.ru
(Dr. Sci. (Phys. & Math.)), Chief researcher, Lab. of Matherial Micromechanics 34, Komsomolskaya st., Ekaterinburg, 620049, Russia

Kirill V Berdnikov

Institute of Engineering Science, Ural Branch of RAS

Email: kir.berdnikov@mail.ru
Engineer, Lab. of Matherial Micromechanics 34, Komsomolskaya st., Ekaterinburg, 620049, Russia

References

  1. Радченко В. П., Небогина Е. В., Андреева Е. А. Структурная модель разупрочняющегося при ползучести материала в условиях сложного напряженного состояния // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2009. № 1(18). С. 75–84.
  2. Кадашевич Е. Ю., Помыткин С. П. Исследование одноосного и двуосного нагружения разупрочняющихся материалов по эндохронной теории неупругости // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 1(26). С. 110–115.
  3. Стружанов В. В., Башуров Вяч. В. Модификационная модель Мазинга // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2007. № 1(14). С. 29–39.
  4. Стружанов В. В. Упругопластическая среда с разупрочнением. Cообщение 1. Свойства материала и инкрементальный закон пластичности при растяжении // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2006. № 42. С. 49–61.
  5. Арнольд В. И., Варченко А. Н., Гусейн–Заде С. М. Особенности дифференцируемых отображений. Т. 1: Классификация критических точек, каустик и волновых фронтов. М.: Наука, 1982. 304 с.
  6. Стружанов В. В., Просвиряков Е. Ю. Растяжение с кручением. Сообщение 2: Устойчивость процесса деформирования образца в механической системе. Жёсткое и мягкое нагружения // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2008. № 2(17). С. 77–86.
  7. Стружанов В. В., Бахарева Е. А. Математические методы в теории чистого изгиба прямоугольных балок из разупрочняющегося материала с симметричной диаграммой растяжения-сжатия // Вычисл. мех. сплош. сред, 2012. Т. 5, № 2. С. 158–167.
  8. Лурье А. И. Tеория упругости. М.: Наука, 1970. 939 с.
  9. Стружанов В. В., Миронов В. И. Деформационное разупрочнение материала в элементах конструкций. Екатеринбург: УрО РАН, 1995. 192 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).