A method for the fast MOID computation for two confocal heliocentric orbits


Cite item

Full Text

Abstract

The paper is on the problem of classification an asteroid as potentially hazardous (PHA), namely the estimation of the MOID parameter. Minimum Orbital Intersection Distance describes the minimal distance between two confocal heliocentric orbits. Analytical, numerical and hybrid methods used for the MOID estimation are reviewed. A brief description of the K. V. Kholshevnikov and G. F. Gronchi analytical methods, which are considered to be classical, is given. The task of calculating the MOID parameter for a large number of asteroids (more than 10,000) with a maximum calculating speed and the ability to parallelize the process is set. A numerical method based on geometrical considerations concerning the location of the bodies on their orbits is proposed. Let us consider two bodies A and E. Since only the minimum distance between two orbits is required, the information on the actual position of the bodies on their orbits is insignificant. The idea is to calculate one full revolution of the body A. For each position of body A the corresponding position of the body E is calculated under the following assumption. Consider a plane P , comprising the body A and the Sun. Therefore, plane P is perpendicular to the orbital plane of the body E. Of the two points at which the plane P intersects the orbit of the body E, E is considered to be at the point that is the nearest the body A. Thus, the position of the body E will depend on the position of the body A. As a result, from the geometric assumptions on the triangle formed by the Sun and two bodies, the distance between A and E is calculated. When one complete revolution of the body A with a certain step is calculated, we receive a set of the distances between two orbits, from which we can identify the areas of the local minima of the discrete representation of the distance function (the distance between the orbits of A and E). Then, the procedure of tuning is carried out to verify and precise the values of local minima of discrete representation of the distance function. As a result, the smallest value of the local minima is considered to be the estimation of the Minimum Orbital Intersection Distance (MOID) takes. Pros of the suggested method are as follows: high speed and adjustable calculation accuracy, the suitability to the use of parallel computing. Comparative tests of the described method were carried out. The results received are consistent with the classical G. F. Gronchi method.

About the authors

Andrey E Derevyanka

Samara State Technical University

Email: AndrDerev@gmail.com
Postgraduate Student, Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Tancredi G. A criterion to classify asteroids and comets based on the orbital parameters // Icarus, 2014. vol. 234. pp. 66-80. doi: 10.1016/j.icarus.2014.02.013.
  2. Milani A., Chesley S. R., Valsecchi G. B. Asteroid close encounters with Earth: Risk assessment // Planetary and Space Science, 2000. vol. 48, no. 10. pp. 945-954. doi: 10.1016/s0032-0633(00)00061-1.
  3. Milani A. The asteroid identification problem I. Recovery of lost asteroids // Icarus, 1999. vol. 137, no. 2. pp. 269-292. doi: 10.1006/icar.1999.6045.
  4. Sitarski G. Approaches of the parabolic comets to the outer planets // Acta Astronomica, 1968. vol. 18, no. 2. pp. 171-195.
  5. Milani A., Chesley S. R., Valsecchi G. B. Asteroid Close Approaches: Analysis and Potential Impact Detection / Asteroids III ; eds. W. Bottke, A. Cellino, P. Paolicchi, and R. P. Binzel: University of Arizona Press, 2002. pp. 55-69.
  6. Kholshevnikov K. V., Vassiliev N. N. On the distance function between two Keplerian elliptic orbits // Celestial Mechanics and Dynamical Astronomy, 1999. vol. 75, no. 2. pp. 75-83. doi: 10.1023/A:1008312521428.
  7. Baluyev R. V., Kholshevnikov K. V. Distance between two arbitrary unperturbed orbits // Celestial Mechanics and Dynamical Astronomy, 2005. vol. 91, no. 3-4. pp. 287-300. doi: 10.1007/s10569-004-3207-1.
  8. Gronchi G. F., Tommei G., Milani A. Mutual geometry of confocal Keplerian orbits: uncertainty of the MOID and search for virtual PHAs // Proceedings of the International Astronomical Union, 2006. vol. 2, no. S236. pp. 3-14. doi: 10.1017/s1743921307003018.
  9. Gronchi G. F. An Algebraic Method to Compute the Critical Points of the Distance Function Between Two Keplerian Orbits // Celestial Mechanics and Dynamical Astronomy, 2005. vol. 93, no. 1-4. pp. 295-329. doi: 10.1007/s10569-005-1623-5.
  10. Gronchi G. F. On the stationary points of the squared distance between two ellipses with a common focus // SIAM J. Sci. Comput., 2002. vol. 20, no. 1. pp. 61-80. doi: 10.1137/s1064827500374170.
  11. Armellin R., Di Lizia P., Berz M., Makino K. Computing the critical points of the distance function between two Keplerian orbits via rigorous global optimization // Celestial Mechanics and Dynamical Astronomy, 2010. vol. 107, no. 3. pp. 377-395. doi: 10.1007/s10569-010-9281-7.
  12. Wićniowski T., Rickman H. Fast Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs) // Acta Astronomica, 2013. vol. 63, no. 2. pp. 293-307.
  13. Vasile M., Colombo C. Optimal Impact Strategies for Asteroid Deflection // Journal of Guidance, Control and Dynamics, 2008. vol. 31, no. 4. pp. 858-872. doi: 10.2514/1.33432.
  14. Besse I. M., Rhee N. H. A numerical method for calculating minimum distance to Near Earth Objects // Applied Mathematics and Computation, 2014. vol. 237. pp. 274-281. doi: 10.1016/j.amc.2014.03.115.
  15. Maršeta D., Segan S. The distributions of positions of Minimal Orbit Intersection Distances among Near Earth Asteroids // Advances in Space Research, 2012. vol. 50, no. 2. pp. 256-259. doi: 10.1016/j.asr.2012.04.005.
  16. Carusi A., Dotto E. Close Encounters of Minor Bodies with the Earth // Icarus, 1996. vol. 124, no. 2. pp. 392-398. doi: 10.1006/icar.1996.0216.
  17. Milisavljevic S. The proximities of asteroids and critical points of the distance function // Serbian Astronomical Journal, 2010. vol. 180. pp. 91-102. doi: 10.2298/saj1080091m.
  18. Segan S., Milisavljević S., Maršeta D. A combined method to compute the proximities of asteroids // Acta Astronomica, 2011. vol. 61, no. 3. pp. 275-283.
  19. Hoots F. R., Crawford L. L., Roehrich R. L. An analytical method to determine future close approaches between satellites // Celestial Mechanics and Dynamical Astronomy, 1984. vol. 33, no. 2. pp. 143-158. doi: 10.1007/bf01234152.
  20. Dybczyński P. A., Jopek T. J., Serafin R. A. On the minimum distance between two Keplerian orbits with a common focus // Celestial Mechanics and Dynamical Astronomy, 1986. vol. 38, no. 4. pp. 345-356. doi: 10.1007/bf01238925

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».