Решение задачи классификации с использованием нейронных нечётких продукционных сетей на основе модели вывода Мамдани-Заде


Цитировать

Полный текст

Аннотация

Рассматривается решение задачи распознавания объектов пересекающихся классов с использованием систем нечеткого вывода и нейронных сетей. Новая многовыходовая сеть Ванга-Менделя сравнивается с новой архитектурой нейронной нечеткой продукционной сети, основанной на модели Мамдани-Заде. Результаты исследования данных моделей приведены при интерпретациях логических операций, заданных соответственно алгебрами Гёделя, Гогена и Лукашевича. Новая сеть Ванга-Менделя может использовать минимум или основанную на сумме формулу как операции T-нормы в соответствии с выбранной алгеброй вместо стандартной операции произведения. Сеть Мамдани-Заде спроектирована в виде каскада операций T-нормы, импликации и S-нормы, заданных выбранной алгеброй. Кроме того, в сети Мамдани-Заде отсутствует слой дефаззификации. Обе сети имеют несколько выходов в соответствии с числом классов предметной области, что отличает их от базовых реализаций. На выходах сетей формируются степени принадлежности входного вектора заданным классам. Для сравнения моделей использовались стандартные задачи классификации ирисов Фишера и итальянских вин. В данной статье приводятся результаты, полученные при обучении сетей алгоритмом обратного распространения ошибки. Анализ ошибок классификации показывает, что использование данных алгебр в качестве интерпретации нечётких логических операций, предложенное в статье, позволяет уменьшить погрешность классификации как для многовыходовой сети Ванга-Менделя, так и для новой сети Мамдани-Заде. Наилучшие результаты обучения показывает алгебра Гёделя, но алгебра Лукашевича демонстрирует лучшие обобщающие свойства при тестировании, что приводит к наименьшему числу ошибок классификации.

Об авторах

Ольга Петровна Солдатова

Самарский государственный аэрокосмический университет им. ак. С. П. Королёва (национальный исследовательский университет)

Email: op-soldatova@yandex.ru
(к.т.н.), доцент, каф. информационных систем и технологий 443086, Россия, Самара, Московское ш., 34

Илья Александрович Лёзин

Самарский государственный аэрокосмический университет им. ак. С. П. Королёва (национальный исследовательский университет)

Email: ilyozin@yandex.ru
(к.т.н.), доцент, каф. информационных систем и технологий 443086, Россия, Самара, Московское ш., 34

Список литературы

  1. L. X. Wang, J. M. Mendel, “Generating fuzzy rules by learning from examples” // IEEE Trans. Syst., Man, Cybern., 1992. vol. 22, no. 6. pp. 1414-1427. doi: 10.1109/isic.1991.187368.
  2. Li-Xin Wang, “The WM method completed: a flexible fuzzy system approach to data mining” // IEEE Trans. Fuzzy Systems, 2003. vol. 11, no. 6. pp. 768-782. doi: 10.1109/TFUZZ.2003.819839.
  3. L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing” // Communications of the ACM, 1994. vol. 37, no. 3. pp. 77-84.
  4. E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis” // IEEE Trans. Computers, vol. C-26, no. 12, pp. 1182-1191. doi: 10.1109/tc.1977.1674779.
  5. С. Осовский, Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. 344 с.
  6. О. П. Солдатова, “Многофункциональный имитатор нейронных сетей” // Программные продукты и системы, 2012. № 3. С. 27-31.
  7. Д. Рутковская, М. Пилиньский, Л. Рутковский, Нейронные сети, генетические алгоритмы и нечёткие системы. М.: Горячая линия-Телеком, 2007. 452 с.
  8. V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic / The Springer International Series in Engineering and Computer Science, vol. 517, Springer, 1999. xiii+320 pp. doi: 10.1007/978-1-4615-5217-8
  9. В. Новак, И. Перфильева, И. Мочкорж, Математические принципы нечёткой логики. Физматлит: М., 2006. 352 с.
  10. В. В. Борисов, В. В. Круглов, А. С. Федулов, Нечеткие модели и сети. М.: Горячая линия-Телеком, 2007. 284 с.
  11. А. С. Катасёв, “Математическое обеспечение и программный комплекс формирования нечётко-продукционных баз знаний для экспертных диагностических систем” // Фундаментальные исследования, 2013. № 10-9. С. 1922-1927.
  12. В. В. Бухтояров, “Трехступенчатый эволюционный метод формирования коллективов нейронных сетей для решения задач классификации” // Программные продукты и системы, 2012. № 4. С. 101-106.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).