О разрешимости нелокальной задачи с обобщенными операторами М. Сайго для уравнения Бицадзе-Лыкова


Цитировать

Полный текст

Аннотация

Для уравнения влагопереноса исследована нелокальная краевая задача в области, являющейся объединением двух характеристических треугольников. Новизна постановки задачи заключается в том, что в краевых условиях содержится обобщённый оператор дробного интегро-дифференцирования в смысле М. Сайго. Единственность решения исследуемой задачи доказана с помощью принципа экстремума для гиперболических уравнений. При доказательстве широко используются свойства операторов обобщённого дробного интегро-дифференцирования в смысле М. Сайго. Существование решения задачи эквивалентно сведено к вопросу разрешимости характеристического особого интегрального уравнения с ядром Коши, для которого в работе исследована гладкость правой части.

Об авторах

Анна Валерьевна Тарасенко

Самарский государственный архитектурно-строительный университет

Email: tarasenko.a.v@mail.ru
(к.ф.-м.н., доц.; tarasenko.a.v@mail.ru; автор, ведущий переписку), доцент, каф. высшей математики Россия, 443001, Самара, ул. Молодогвардейская, 194

Ирина Петровна Егорова

Самарский государственный архитектурно-строительный университет

Email: ira.egorova81@yandex.ru
(к.ф.-м.н., доц.; ira.egorova81@yandex.ru), доцент, каф. высшей математики Россия, 443001, Самара, ул. Молодогвардейская, 194

Список литературы

  1. Тарасенко А. В., Егорова И. П. О разрешимости нелокальной задачи с обобщенными операторами М. Сайго для уравнения Бицадзе-Лыкова / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 345-346.
  2. Нахушев А. М. Уравнения математической биологии. М.: Высш. шк., 1995. 300 с.
  3. Saigo M. A. A certain boundary value problem for the Euler-Poisson-Darboux equation // Math. Japon., 1979. vol. 24, no. 4. pp. 377-385.
  4. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  5. Репин О. А. Аналог задачи Нахушева для уравнения Бицадзе-Лыкова // Диффер. уравн., 2002. Т. 38, No 10. С. 1412-1417.
  6. Ефимова С. В., Репин О. А. Задача с нелокальными условиями на характеристиках для уравнения влагопереноса // Диффер. уравн., 2004. Т. 40, No 10. С. 1419-1422.
  7. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981.
  8. с. Репин О. А. О разрешимости задачи с краевым условием на характеристиках для вырождающегося гиперболического уравнения // Диффер. уравн., 1998. Т. 34, No 1. С. 110- 113.
  9. Agmon S., Nirenberg L., Protter M. N. A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type // Comm. Pure Appl. Math., 1953. vol. 6, no. 4. pp. 455-470. doi: 10.1002/cpa.3160060402.
  10. Нахушев А. М. Элементы дробного исчисления и их применение. Нальчик: КБНЦ РАН, 2000. 299 с.
  11. Гахов Ф. Д. Краевые задачи. М.: Наука, 1977. 640 с.
  12. Saigo M. A., Kilbas A. A. Generalized fractional integrals and derivatives in Hölder spaces / Transform Methods and Special Function, Proc. Intern. Workshop; Sofia 12-17 August, 1994. Singapore: Science Culture Techn. Publ., 1995. pp. 282-293.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).