К случаям разрешимости одного интегрального уравнения в квадратурах


Цитировать

Полный текст

Аннотация

Рассматривается уравнение Вольтерра с двумя независимыми переменными, встречающееся в теории упругости. Целью работы является отыскание новых вариантов достаточных условий его разрешимости в явном виде. Предложен способ редукции исходного уравнения сначала к задаче Гурса для дифференциального уравнения третьего порядка, а затем к двум последовательно решаемым задачам для уравнений первого и второго порядка. Одна из них решается путем непосредственного интегрирования уравнения, а решение второй записывается через функцию Римана, для которой найдены случаи построения ее в явном виде. В терминах коэффициентов исходного уравнения получено семь вариантов условий указанного построения. Поскольку имеется 4 варианта участвующей в рассуждениях факторизации уравнения третьего порядка, в настоящей статье фактически указано 28 вариантов условий разрешимости исходного уравнения в квадратурах.

Об авторах

Инна Маратовна Шакирова

Казанский (Приволжский) федеральный университет

Email: inna.sarvarova@yandex.ru
аспирант, каф. дифференциальных уравнений Россия, 420008, Казань, ул. Кремлевская, 18

Список литературы

  1. Полянин А. Д., Манжиров А. В. Справочник по интегральным уравнениям. М.: Физматлит, 2003. 608 с.
  2. Забрейко П. П., Калитвин А. С., Фролова Е. В. Об интегральных уравнениях с частными интегралами в пространстве непрерывных функций // Дифференц. Уравнения, 2002. Т. 38, № 4. С. 538-546.
  3. Векуа И. Н. Новые методы решения эллиптических уравнений. М., Л.: ГИТТЛ, 1948. 296 с.
  4. Мюнтц Г. Интегральные уравнения. Т. 1. М., Л.: Гостехтеориздат, 1934. 330 с.
  5. Жегалов В. И. Решение уравнений Вольтерры с частными интегралами с помощью дифференциальных уравнений // Дифференц. уравнения, 2008. Т. 44, № 7. С. 874-882.
  6. Жегалов В. И., Миронов А. Н. Дифференциальные уравнения со старшими частными производными. Казань: Казанское матем. об-во, 2001. 226 с.
  7. Нахушев А. М. Уравнения математической биологии. М.: Высшая школа, 1995. 301 с.
  8. Hallaire M. Le potentiel efficace de l’eau dans le sol en régime de déssèchement / L’Eau et la Production Végétale. Paris: Institut National de la Recherche Agronomique, 1964. pp. 27-62.
  9. Mounier J. Évapotranspiration potentielle et besoins en eau // Norois, 1965. vol. 47, no. 47. pp. 349-352. doi: 10.3406/noroi.1965.1531.
  10. Colton D. Pseudoparabolic equation in one space variable // J. Differ. Equations, 1972. vol. 12, no. 3. pp. 559-565. doi: 10.1016/0022-0396(72)90025-3.
  11. Rundell W., Stecher M. Remarks concerning the supports of solutions of pseudoparabolic equations // Proc. Amer. Math. Soc., 1977. vol. 63, no. 1. pp. 77-81. doi: 10.1090/s0002-9939-1977-0433037-4.
  12. Rundell W. The construction of solutions to pseudoparabolic equations in noncylindrical domains // J. Differ. Equations, 1978. vol. 27, no. 3. pp. 394-404. doi: 10.1016/0022-0396(78)90059-1.
  13. Rundell W. The Stefan Problem for a pseudo-heat equation // Indiana Univ. Math. J., 1978. vol. 27. pp. 739-750.
  14. Rundell W. The uniqueness class for the Cauchy problem for pseudoparabolic equations // Proc. Amer. Math. Soc., 1979. vol. 76, no. 2. pp. 253-257. doi: 10.1090/s0002-9939-1979-0537083-3.
  15. Шханухов М. Х. О некоторых краевых задачах для уравнения третьего порядка, возникающих при моделировании фильтрации жидкости в пористых средах // Дифференц. уравнения, 1982. Т. 18, № 4. С. 689-699.
  16. Шханухов М. Х. Об одном методе решения краевых задач для уравнений третьего порядка // ДАН СССР, 1982. Т. 265, № 6. С. 1327-1330.
  17. Жегалов В. И. К случаям разрешимости гиперболических уравнений в терминах специальных функций / Неклассические уравнения математической физики. Новосибирск: Институт математики СО РАН, 2002. С. 73-79.
  18. Жегалов В. И., Сарварова И. М. К условиям разрешимости задачи Гурса в квадратурах // Изв. вузов. Матем., 2013. № 3. С. 68-73.
  19. Андреев А. А., Яковлева Ю. О. Задача Гурса для одной системы гиперболических дифференциальных уравнений третьего порядка с двумя независимыми переменными // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. № 3(24). С. 35-41. doi: 10.14498/vsgtu996.
  20. Андреев А. А., Яковлева Ю. О. Характеристическая задача для одного гиперболического дифференциального уравнения третьего порядка с некратными характеристиками // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 2013. Т. 13, № 1(2). С. 3-6.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).