Задача Коши для системы уравнений гиперболического типа четвертого порядка общего вида с некратными характеристиками


Цитировать

Полный текст

Аннотация

В статье для гиперболического дифференциального уравнения четвертого порядка с некратными характеристиками рассмотрена задача Коши. Обобщение этой задачи выполнено на основе решения аналогичной задачи Коши для гиперболического уравнения третьего порядка с некратными характеристиками, для которой построено решение в виде, аналогичном формуле Даламбера. Получено регулярное решение задачи Коши для гиперболического уравнения четвертого порядка с некратными характеристиками в явном виде. Указанное решение также является аналогом формулы Даламбера. В результате исследований сформулирована теорема о существовании и единственности регулярного решения задачи Коши для гиперболического уравнения четвертого порядка с некратными характеристиками. В статье исследуется задача Коши для системы гиперболических дифференциальных уравнений четвертого порядка общего вида с некратными характеристиками.

Об авторах

Александр Анатольевич Андреев

Самарский государственный технический университет

Email: andre01071948@yandex.ru
(к.ф.-м.н., доц.; andre01071948@yandex.ru), доцент, каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Юлия Олеговна Яковлева

Россия, 443011, Самара, ул. Академика Павлова, 1

Email: julia.yakovleva@mail.ru
(к.ф.-м.н.; julia.yakovleva@mail.ru; автор, ведущий переписку), доцент, каф. математики и бизнес-информатики 1, Academician Pavlov st., Samara, 443011, Russian Federation

Список литературы

  1. Rieman B. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Aus dem achten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 1860.) / Bernard Riemann’s Gesammelte mathematische Werke und wissenschaftlicher Nachlass; eds. R. Dedekind, H. M. Weber. United States: BiblioLife, 2009. pp. 145-164 (In German). doi: 10.1017/cbo9781139568050.009.
  2. Ali Raeisian S. M. Effective Solution of Riemann Problem for Fifth Order Improperly Elliptic Equation on a Rectangle // AJCM, 2012. vol. 2, no. 4. pp. 282-286. doi: 10.4236/ajcm.2012.24038.
  3. Holmgren E. Sur les systèmes linéaires aux dérivées partielles du premier ordre deux variables indépendantes a caractéristiques réelles et distinetes // Arkiv f. Mat., Astr. och Fys., 1909.vol. 5, no. 1. 13 pp. (In Swedish)
  4. Петровский И. Г. Избранные труды. Системы уравнений с частными производными. Алгебраическая геометрия. М.: Наука, 1986. 500 с.
  5. Яковлева Ю. О. Аналог формулы Даламбера для гиперболического уравнения третьего порядка с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 1(26). С. 247-250. doi: 10.14498/vsgtu1028.
  6. Nikolov A., Popivanov N. Singular solutions to Protter’s problem for (3+1)-D degenerate wave equation (8-13 June 2012; Sozopol, Bulgaria) / AIP Conf. Proc., 1497, 2012. pp. 233-238. doi: 10.1063/1.4766790.
  7. Корзюк В. И., Чеб Е. С., Ле Тхи Тху, Решение смешанной задачи для биволнового уравнения методом характеристик // Тр. Ин-та матем., 2010. Т. 18, № 2. С. 36-54.
  8. Яковлева Ю. О. Одна характеристическая задача для дифференциального гиперболического уравнения третьего порядка общего вида с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 3(28). С. 180-183. doi: 10.14498/vsgtu1108.
  9. Андреев А. А., Яковлева Ю. О. Характеристическая задача для одного гиперболического дифференциального уравнения третьего порядка с некратными характеристиками // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 2013. Т. 13, № 1(2). С. 3-6.
  10. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1972. 736 с.
  11. Бицадзе А. В. Уравнения математической физики. М.: Наука, 1982. 336 с.
  12. Bellman R. Introduction to matrix analysis: 2nd ed., Reprint of the 1970 Orig. / Classics in Applied Mathematics. vol. 19. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997. xxviii+403 pp.
  13. Андреев А. А., Яковлева Ю. О. Характеристическая задача для системы гиперболических дифференциальных уравнений третьего порядка общего вида с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 1(30). С. 31-36. doi: 10.14498/vsgtu1182.
  14. Гантмахер Ф. Р. Теория матриц. М.: Наука, 1988. 549 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».