Устойчивость и сходимость разностных схем для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти


Цитировать

Полный текст

Аннотация

Методом энергетических неравенств получена априорная оценка решения первой краевой задачи для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти. Построен разностный аналог дробной производной дискретно-распределенного порядка с обобщенными функциями памяти (аналог формулы L1). Исследованы основные свойства этого разностного оператора и на его основе построены разностные схемы второго и четвертого порядков аппроксимации по пространственной переменной и дробного порядка $ 2{-}\\alpha_0 $ по временной переменной. Доказана устойчивость предложенных разностных схем, а также их сходимость в сеточной $ L_2 $-норме со скоростью, равной порядку погрешности аппроксимации. Достоверность полученных результатов подтверждают численные расчеты, проведенные для тестовых примеров.

Об авторах

Асланбек Хизирович Хибиев

Институт прикладной математики и автоматизации - филиал Кабардино-Балкарского научного центра Российской академии наук

Email: akkhibiev@gmail.com
89 a, Shortanova st., Nal'chik, 360000, Russian Federation

Список литературы

  1. Oldham K. B., Spanier J., The fractional calculus; Theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, 111, Academic Press, New York, London, 1974, xiii+234 pp.
  2. Podlubny I., Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp.
  3. Applications of Fractional Calculus in Physics, ed. R. Hilfer, World Scientific, Singapore, 2000, viii+463 pp.
  4. Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006, xvi+523 pp.
  5. Jiao Z., Chen Y., Podlubny I., Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, Springer Briefs in Control, Automation and Robotics, Springer-Verlag, London, 2012, xiii+90 pp.
  6. Luchko Y., "Boundary value problems for the generalized time-fractional diffusion equation of distributed order", Fract. Calc. Appl. Anal., 12:4 (2009), 409-422
  7. Luchko Y., "Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation", J. Math. Anal. Appl., 374:2 (2011), 538-548
  8. Gao G. H., Alikhanov A. A., Sun Z. Z., "The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations", J. Sci. Comput., 73:1 (2017), 93-121
  9. Sandev T., Chechkin A., Kantz H., Metzler R., "Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel", Fract. Calc. Appl. Anal., 18:4 (2015), 1006-1038
  10. Алиханов А. А., "Априорные оценки решений краевых задач для уравнений дробного порядка", Дифференц. уравнения, 46:5 (2010), 658-664
  11. Alikhanov A. A., "Boundary value problems for the diffusion equation of the variable order in differential and difference settings", Appl. Math. Comput., 219 (2012), 3938-3946
  12. Alikhanov A. A., "A time-fractional diffusion equation with generalized memory kernel in differential and difference settings with smooth solutions", Comput. Methods Appl. Math., 17:4 (2017), 647-660
  13. Alikhanov A. A., "A new difference scheme for the time fractional diffusion equation", J. Comput. Phys., 280 (2015), 424-438
  14. Alikhanov A. A., "Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation", Appl. Math. Comput., 268 (2015), 12-22
  15. Алиханов А. А., "Устойчивость и сходимость разностных схем для краевых задач уравнения диффузии дробного порядка", Ж. вычисл. матем. и матем. физ., 56:4 (2016), 572-586
  16. Таукенова Ф. И., Шхануков-Лафишев М. Х., "Разностные методы решения краевых задач для дифференциальных уравнений дробного порядка", Ж. вычисл. матем. и матем. физ., 46:10 (2006), 1871-1881
  17. Sakamoto K., Yamamoto M., "Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems", J. Math. Anal. Appl., 382:1 (2011), 426-447
  18. Luchko Y., "Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation", Fract. Calc. Appl. Anal., 15:1 (2012), 141-160
  19. Alikhanov A. A., "A difference method of solving the Steklov nonlocal boundary value problem of second kind for the time-fractional diffusion equation", Comput. Methods Appl. Math., 17:1 (2017), 1-16
  20. Stynes M., O'Riordan E., Gracia J. L., "Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation", SIAM J. Numer. Anal., 55:2, 1057-1079
  21. Jin B., Lazarov R., Zhou Z., "An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data", IMA J. Numer. Anal., 36:1, 197-221
  22. Jin B., Lazarov R., Sheen D., Zhou Z., "Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data", Fract. Calc. Appl. Anal., 19:1, 69-93
  23. Gao G. H., Sun Z. Z., Zhang H. W., "A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications", J. Comput. Phys., 259 (2014), 33-50
  24. Samarskii A. A., The Theory of Difference Schemes, Pure and Applied Mathematics, Marcel Dekker, 240, Marcel Dekker Inc., New York, 2001, 786 pp.
  25. Gao G. H., Sun Z. Z., "A compact finite difference scheme for the fractional sub-diffusion equations", J. Comput. Phys., 230:3 (2011), 586-595

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».