Динамическая устойчивость геометрически нерегулярной нагретой пологой цилиндрической оболочки в сверхзвуковом потоке газа


Цитировать

Полный текст

Аннотация

На базе модели типа Лява рассматривается нагретая до постоянной температуры геометрически нерегулярная пологая цилиндрическая оболочка, обдуваемая сверхзвуковым потоком газа со стороны одной из ее основных поверхностей. За основу взята континуальная модель термоупругой системы в виде тонкостенной оболочки, подкрепленной ребрами вдоль набегающего газового потока. Сингулярная система уравнений динамической термоустойчивости геометрически нерегулярной оболочки содержит слагаемые, учитывающие «растяжение-сжатие» и сдвиг подкрепляющих элементов в тангенциальной плоскости, тангенциальные усилия, вызванные нагревом оболочки и, поперечную нагрузку, стандартным образом записанную по «поршневой теории». Тангенциальные усилия предварительно определяются как решение сингулярных дифференциальных уравнений безмоментной термоупругости геометрически нерегулярной оболочки с учетом краевых усилий. Решение системы динамических уравнений термоупругости оболочки разыскивается в виде суммы двойного тригонометрического ряда (для функции прогиба) с переменными по временной координате коэффициентами. На основании метода Галеркина получена однородная система для коэффициентов аппроксимирующего ряда, которая сведена к одному дифференциальному уравнению четвертого порядка. Решение приводится во втором приближении, что соответствует двум полуволнам в направлении потока и одной полуволне в перпендикулярном направлении. На основании стандартных методов анализа динамической устойчивости тонкостенных конструкций определяются критические значения скоростей газового потока. Количественные результаты приводятся в виде таблиц, иллюстрирующих влияние геометрических параметров термоупругой системы «оболочка-ребра», температуры на устойчивость геометрически нерегулярной цилиндрической оболочки в сверхзвуковом потоке газа с учетом демпфирования.

Об авторах

Григорий Николаевич Белосточный

Саратовский государственный университет им. Н. Г. Чернышевского (национальный исследовательский университет)

Email: belostochny@mail.ru
доктор технических наук, профессор; профессор; каф. математической теории упругости и биомеханики Россия, 410012, Саратов, ул. Астраханская, 83

Ольга Анатольевна Мыльцина

Саратовский государственный университет им. Н. Г. Чернышевского (национальный исследовательский университет)

Email: omyltcina@yandex.ru
кандидат физико-математических наук; ассистент; каф. теории функций и стохастического анализа Россия, 410012, Саратов, ул. Астраханская, 83

Список литературы

  1. Вольмир А. С. Оболочки в потоке жидкости и газа. М.: Наука, 1979. 320 с.
  2. Амбарцумян C. А., Багдасарян Ж. Е. Об устойчивости ортотропных пластинок, обтекаемых сверхзвуковым потоком газа // Изв. АН СССР, ОТН, Механика и машиностроение, 1961. № 4. С. 91-96.
  3. Болотин В. В., Новичков Ю. Н. Выпучивание и установившийся флайтер термически сжатых панелей, находящихся в сверхзвуковом потоке // Инж. журн., 1961. № 2. С. 82-96.
  4. Мовчан А. А. О колебаниях пластинки, движущейся в газе // ПММ, 1956. Т. 20, № 2. С. 211-222.
  5. Дун Мин-дэ, Об устойчивости упругой пластинки при сверхзвуковом обтекании // Докл. АН СССР, 1958. Т. 120, № 4. С. 726-729.
  6. Веденеев В. В. Высокочастотный флаттер прямоугольной пластины // Изв. РАН. МЖГ, 2006. № 4. С. 173-181.
  7. Огибалов П. М., Грибанов В. Ф. Термоустойчивость пластин и оболочек. М.: МГУ, 1968. 520 с.
  8. Огибалов П. М. Вопросы динамики и устойчивости оболочек. М.: МГУ, 1963. 417 с.
  9. Болотин В. В. Температурное выпучивание пластин и пологих оболочек в сверхзвуковом потоке газа / Расчеты на прочность, Вып. 6. М.: Машгиз, 1960. С. 190-216.
  10. Жилин П. А. Линейная теория ребристых оболочек // Изв. АН СССР. МТТ, 1970. № 4. С. 150-166.
  11. Белосточный Г. Н., Ульянова О. И. Континуальная модель композиции из оболочек вращения с термочувствительной толщиной // Изв. РАН. МТТ, 2011. № 2. С. 184-191.
  12. Белосточный Г. Н., Рассудов В. М. Континуальная модель термочувствительной ортотропной системы «оболочка-ребра» с учетом влияния больших прогибов / Механика деформируемых сред, Вып. 8. Саратов: Сарат. политехн. ин-т, 1983. С. 10-22.
  13. Белосточный Г. Н., Рассудов В. М. Континуальный подход к термоустойчивости упругих систем «пластинка-ребра» / Прикладная теория упругости. Саратов: Сарат. политехн. ин-т, 1980. С. 94-99.
  14. Жилин П. А. Общая теория ребристых оболочек. Прочность гидротурбин / Тр. ЦКТИ, Вып. 8. Л., 1968. С. 46-70.
  15. Карпов В. В., Сальников А. Ю. Вариационный метод вывода нелинейных уравнений движения пологих ребристых оболочек // Вестн. гражд. инженеров, 2008. № 4(17). С. 121-124.
  16. Белосточный Г. Н., Мыльцина О. А. Уравнения термоупругости композиций из оболочек вращения // Вестник СГТУ, 2011. № 4 (59). Вып. 1. С. 56-64.
  17. Онанов Г. Г. Уравнения с сингулярными коэффициентами типа дельта-функции и ее производных // Докл. АН СССР, 1970. Т. 191, № 5. С. 997-1000.
  18. Белосточный Г. Н. Аналитические методы определения замкнутых интегралов сингулярных дифференциальных уравнений термоупругости геометрически нерегулярных оболочек // Докл. Акад. воен. наук, 1999. № 1. С. 14-26.
  19. Geckeler J. W. Elastostatik / Handbuch der Physik. vol. 6, 1928. pp. 141-308 (In German).
  20. Ильюшин А. А. Закон плоских сечений в аэродинамики больших сверхзвуковых скоростей // ПММ, 1956. № 6. С. 733-755.
  21. Вольмир А. С. Устойчивость деформируемых систем. М.: Наука, 1967. 984 с.
  22. Владимиров В. С. Обобщенные функции в математической физике. М.: Наука, 1979. 319 с.
  23. Канторович Л. В., Крылов В. И. Приближенные методы высшего анализа. М.: Физматлит, 1962. 708 с.
  24. Rektorys K. Variational methods in mathematics, science and engineering. Dordrecht, Boston, London: D. Reidel Publ., 1980. 571 pp.; doi: 10.1007/978-94-011-6450-4.
  25. Белосточный Г. Н., Рассудов В. М. Термоупругие системы типа «пластинка-ребра» в сверхзвуковом потоке газа / Прикладная теория упругости, Вып. 8. Саратов: Сарат. политехн. ин-т, 1983. С. 114-121.
  26. Егоров К. В. Основы теории автоматического регулирования. М.: Энергия, 1967. 648 с.
  27. Рассудов В. М., Красюков В. П., Панкратов Н. Д. Некоторые задачи термоупругости пластинок и пологих оболочек. Саратов: Сарат. ун-т, 1973. 155 с.
  28. Назаров А. А. Основы теории и методы расчета пологих оболочек. Л., М.: Стройиздат, 1966. 304 с.
  29. Мыльцина О. А., Белосточный Г. Н. Устойчивость нагретой ортотропной геометрически нерегулярной пластинки в сверхзвуковом потоке газа // Вестник Пермского национального исследовательского политехнического университета. Механика, 2017. № 4. С. 109-120. doi: 10.15593/perm.mech/2017.4.08.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».