Динамические равновесия неизотермической жидкости


Цитировать

Полный текст

Аннотация

В рамках точности приближения Буссинеска рассмотрены стационарные динамические равновесия вращающейся массы неизотермической жидкости. Показано, что в этом случае в жидкости наблюдается конечное число противотечений и усиление скоростей по сравнению с заданными на границе значениями, а также формирование зон положительного и отрицательного давления и температуры.

Об авторах

Евгений Юрьевич Просвиряков

Институт машиноведения УрО РАН; Уральский федеральный университет им. первого Президента России Б. Н. Ельцина

Email: evgen_pros@mail.ru
доктор физико-математических наук; заведующий сектором; сектор нелинейной вихревой гидродинамики Россия, 620049, Екатеринбург, ул. Комсомольская, 34; Россия, 620002, Екатеринбург, ул. Мира, 19

Список литературы

  1. Newton I. Opera quae exstant omnia, Faksimile-Neudruck der Ausgabe von Samuel Horsley, London 1779-1785 in fünf Bänden. Band 1, 4. Stuttgart-Bad Cannstatt, Friedrich Frommann Verlag (Günther Holzboog), 1964, xx+592 pp. (In German)
  2. The Correspondence of Isaac Newton, vol. 1. 1661-1675, ed. H. W. Turnbull. New York, Cambridge Univ. Press, 1959, xxxviii+468 pp.
  3. Poincaré H. Cinématique et mécanismes. Potentiel et mécanique des fluides, Cours professé à la Sorbonne. Paris, G. Carré et C. Naud, 1899, iv+385 pp. (In French)
  4. Lyapunov A. M. On the stability of ellipsoidal equilibrium forms of rotating fluid, In: Collected works. Vol. III. Moscow, Akad. Nauk SSSR, 1959, pp. 5-113 (In Russian).
  5. Lyapunov A. M. On the equilibrium figures of rotating homogeneous liquid mass slightly different from ellipsoids, In: Collected works. Vol. IV. Moscow, Akad. Nauk SSSR, 1959, pp. 5-645 (In Russian).
  6. Chandrasekhar S. Ellipsoidal figures of equilibrium. New Haven, London, Yale University Press, 1969, ix+252 pp.
  7. Hagihara Y. Theories of equilibrium figures of a rotating homogeneous fluid mass, NASA Special Publication, vol. 186. Washington, US Government Printing Office, 1970.
  8. Borisov A. V., Kilin A. A., Mamaev I. S. The Hamiltonian Dynamics of Self-gravitating Liquid and Gas Ellipsoid, Regul. Chaotic Dyn., 2009, vol. 14, no. 2, pp. 179-217. doi: 10.1134/S1560354709020014.
  9. Appell P. Traité de mécanique rationnelle, Tome IV, 1: Figures d’équilibre d’une masse liquide homogène en rotation. Paris, Gauthier-Villars, 1932, viii+342 pp. (In French)
  10. Betti E. Sopra i moti che conservano la figura ellissoidale a una massa fluida eterogenea, Brioschi Ann, 1879. (2) X, pp. 173-187 (In Italian).
  11. Volterra V. Sur la stratification dúne masse fluide en équilibre, Acta Math., 1903, vol. 27, no. 1, pp. 105-124.
  12. Liouville J. Sur la figure dúne masse fluide homogéne, en équilibre et douée dún mouvement de rotation, J. de l’École Polytech., 1834, vol. 14, pp. 289-296.
  13. Dirichlet G. L. Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass hergestellt von Herrn R. Dedekind zu Zürich), J. Reine Angew. Math. (Crelle’s Journal), 1861, vol. 58, pp. 181-216.
  14. Arnold V. I., Khesin B. A. Topological Methods in Hydrodynamics. New York, Springer, 1999, 392 pp.
  15. Dolzhansky F. V. On the mechanical prototypes of fundamental hydrodynamic invariants and slow manifolds, Physics-Uspekhi, 2005, vol. 48, no. 12, pp. 1205-1234. doi: 10.1070/PU2005v048n12ABEH002375.
  16. Hadamard J. Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux, C. R. Acad. Sci., Paris, 1911, vol. 152, no. 25, pp. 1735-1738.
  17. Rybcziński, W. Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium, Bull. Int. Acad. Sci. Cracovie. Ser. A, 1911, vol. 1, pp. 40-46.
  18. Aristov S. N., Prosviryakov E. Yu. A New Class of Exact Solutions for Three Dimensional Thermal Diffusion Equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286-293. doi: 10.1134/S0040579516030027.
  19. Aristov S. N., Knyazev D. V., Polyanin A. D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642-662. doi: 10.1134/S0040579509050066.
  20. Polyanin A. D., Zaitsev V. F. Handbook of ordinary differential equations. Exact solutions, methods, and problems. Boca Raton, FL, CRC Press, 2018, xxix+1456 pp.
  21. Aristov S. N., Prosviryakov E. Yu. Unsteady Layered Vortical Fluid Flows, Fluid Dyn., 2016, vol. 51, no. 2, pp. 148-154. doi: 10.1134/S0015462816020034.
  22. Aristov S. N., Prosviryakov E. Yu., Spevak L. F. Unsteady-State Bénard-Marangoni Convection in Layered Viscous Incompressible Flows, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 132-141. doi: 10.1134/S0040579516020019.
  23. Aristov S. N., Prosviryakov E. Yu. On one class of analytic solutions of the stationary axisymmetric convection Bénard-Marangoni viscous incompressible fluid, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, vol. 3(32), pp. 110-118 (In Russian). doi: 10.14498/vsgtu1205.
  24. Aristov S. N., Privalova V. V., Prosviryakov E. Yu. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer, Nelin. Dinam., 2016, vol. 12, no. 2, pp. 167-178 (In Russian). doi: 10.20537/nd1602001.
  25. Burmasheva N. V., Prosviryakov E. Yu. A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 1, pp. 180-196 (In Russian). doi: 10.14498/vsgtu1527.
  26. Burmasheva N. V., Prosviryakov E. Yu. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 4, pp. 736-751 (In Russian). doi: 10.14498/vsgtu1568.
  27. Gorshkov A. V., Prosviryakov E. Yu. Ekman Convective Layer Flow of a Viscous Incompressible Fluid, Izv. Atmos. Ocean. Phys., 2018, vol. 54, no. 2, pp. 89-195. doi: 10.1134/S0001433818020081.
  28. Aristov S. N., Knyazev D. V. Localized convective flows in a nonuniformly heated liquid layer, Fluid Dyn., 2014, vol. 49, no. 5, pp. 565-575. doi: 10.1134/S0015462814050020.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».