A numerical method of nonlinear estimation based on difference equations


Cite item

Full Text

Abstract

The article considers a new numerical method for estimating the parameters of nonlinear mathematical models based on difference equations describing the results of observations. The algorithm of the numerical method includes: - the construction of a linear-parametric discrete model of the process under study in the form of difference equations, the coefficients of which are known to be associated with the parameters of a nonlinear mathematical model; - the formation of a generalized regression model based on the difference equations; - the calculation of the initial approximation estimate and the iterative procedure for refining the mean-square estimates of the coefficients of the generalized regression model; - the calculation of the estimates of the parameters of the nonlinear mathematical model based on the mean-square estimates of the coefficients of the difference equations; - evaluation of the error of the results of calculations based on the methods of statistical processing of experimental data. Various approaches to the construction of systems of difference equations for mathematical models in the form of nonlinear functional dependencies are proposed. The relations underlying the iterative process of refining the coefficients of the generalized regression model constructed on the basis of difference equations are obtained. The procedure for estimating the error of the results of calculations of the parameters of nonlinear functional dependencies, which are known to be associated with the coefficients of the system of difference equations, is described. The application of the numerical method based on the difference equations is illustrated by the examples of estimation of the parameters of the mathematical model of the linear oscillator with attenuation, the model of free oscillations of the dissipative mechanical system with turbulent friction, as well as the parameters of the logistic trend described by the Verhulst (Pearl-Reed) function.

About the authors

Vladimir E Zoteev

Samara State Technical University

Email: zoteev-ve@mail.ru
Dr. Tech. Sci.; Professor; Dept. of Applied Mathematics and Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Вучков И., Бояджиева Л., Солаков О. Прикладной линейный регрессионный анализ. М.: Финансы и статистика, 1987. 238 с.
  2. Draper N. R., Smith H. Applied regression analysis / Wiley Series in Probability and Mathematical Statistics. New York etc.: John Wiley & Sons, 1981. xiv+709 pp. doi: 10.1002/9781118625590.
  3. Демиденко Е. З. Линейная и нелинейная регрессии. М.: Финансы и статистика, 1981. 302 с.
  4. Björck Å. Numerical methods in matrix computations / Texts in Applied Mathematics. vol. 59. Cham: Springer, 2015. xvi+800 pp. doi: 10.1007/978-3-319-05089-8.
  5. Bard Y. Nonlinear parameter estimation. New York: Academic Press, 1974. x+341 pp.
  6. Gunst R. F., Mason R. L. Regression analysis and its application. A data-oriented approach / Statistics: Textbooks and Monographs. vol. 34. New York, Basel: Marcel Dekker, 1980. xv+402 pp.
  7. Грановский В. А., Сирая Т. Н. Методы обработки экспериментальных данных при измерениях. Л.: Энергоатомиздат, 1990. 288 с.
  8. Marquardt D. W. An algorithm for least-squares estimation of nonlinear parameters // J. Soc. Ind. Appl. Math., 1963. vol. 11, no. 2. pp. 431-441. doi: 10.1137/0111030.
  9. Hartley H. O., Booker A. Nonlinear least squares estimation // Ann. Math. Stat., 1965. vol. 36. pp. 638-650. doi: 10.1214/aoms/1177700171.
  10. Формалиев В. Ф., Ревизников Д. Л. Численные методы. М.: Физматлит, 2006. 400 с.
  11. Зотеев В. Е. Параметрическая идентификация диссипативных механических систем на основе разностных уравнений. М.: Машиностроение, 2009. 344 с.
  12. Деч Г. Руководство к практическому применению преобразования Лапласа и
  13. Егорова А. А Метод параметрической идентификации систем с турбулентным трением / Математическое моделирование и краевые задачи: Труды Восьмой Всероссийской научной конференции с международным участием. Часть 2. Самара: СамГТУ, 2011. С. 143-156.
  14. Волков Е. А. Численные методы. СПб.: Лань, 2004. 256 с.
  15. Дубовцев А. В., Ермолаев М. Б. Прогнозирование развития рынка мобильной связи на основе
  16. Martino J. P. Technological forecasting for decisionmaking. New York: American Elsevier, 1972. xviii+750 pp.
  17. Дуброва Т. А. Статистические методы прогнозирования. М.: Юнити-Дана, 2003. 206 с.
  18. Зотеев В. Е. Параметрическая идентификация линейной динамической системы на основе стохастических разностных уравнений // Матем. моделирование, 2008. Т. 20, № 9. С. 120-128.
  19. Зотеев В. Е., Стукалова Е. Д., Башкинова Е. В. Численный метод оценки параметров нелинейного дифференциального оператора второго порядка // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2017. Т. 21, № 3. С. 556-580. doi: 10.14498/vsgtu1560.
  20. Зотеев В. Е., Макаров Р. Ю. Численный метод определения параметров модели ползучести в пределах первых двух стадий // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение, 2017. Т. 16, № 2. С. 145-146. doi: 10.18287/2541-7533-2017-16-2-145-156.
  21. Макаров Р. Ю. Численный метод определения параметров кривой ползучести на основе закона Содерберга // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение, 2015. Т. 14, № 2. С. 113-117. doi: 10.18287/2412-7329-2015-14-2-113-118.
  22. Зотеев В. Е., Макаров Р. Ю. Численный метод оценки параметров деформации ползучести при степенной зависимости параметра разупрочнения // Современные технологии. Системный анализ. Моделирование, 2016. Т. 51, № 3. С. 18-25.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».